Mond gas

Last updated

Mond gas is a cheap coal gas that was used for industrial heating purposes. [1] Coal gases are made by decomposing coal through heating it to a high temperature. Coal gases were the primary source of gas fuel during the 1940s and 1950s until the adoption of natural gas. They were used for lighting, heating, and cooking, typically being supplied to households through pipe distribution systems. The gas was named after its discoverer, Ludwig Mond. [2] :10

Contents

Discovery

In 1889, Ludwig Mond discovered that the combustion of coal with air and steam produced ammonia along with an extra gas, which was named the Mond gas. He discovered this while looking for a process to form ammonium sulfate, which was useful in agriculture. [1] The process involved reacting low-quality coal with superheated steam, which produced the Mond gas. The gas was then passed through dilute sulfuric acid spray, which ultimately removed the ammonia, forming ammonium sulfate. [3]

Mond modified the gasification process by restricting the air supply and filling the air with steam, providing a low working temperature. This temperature was below ammonia's point of dissociation, maximizing the amount of ammonia that could be produced from the nitrogen, a product from superheating coal. [4]

Gas production

The Mond gas process was designed to convert cheap coal into flammable gas, which was made up of mainly hydrogen, while recovering ammonium sulfate. The gas produced was rich in hydrogen and poor in carbon monoxide. Although it could be used for some industrial purposes and power generation, the gas was limited for heating or lighting. [4]

In 1897, the first Mond gas plant began at the Brunner Mond & Company in Northwich, Cheshire. Mond plants which recovered ammonia needed to be large in order to be profitable, using at least 182 tons of coal per week. [2] :61 [4]

Reaction

Predominant reaction in Mond Gas Process: C + 2H2O = CO2+ 2H2 [4]

The Mond gas was composed of roughly:

Uses

Mond gas could be produced and used more efficiently than other gases in the late 19th and early 20th century. The gas was used as fuel for street lighting and basic residential uses that required gas such as ovens, kilns, furnaces, and boilers. [5]

Advantages

The Mond gas could be produced very cheaply since it required only a low-quality coal, offering large savings for many processes. [3] The production of Mond gas did not require much labor. [2] :15

The Mond gas became popularized during the industrial power generation in the beginning of the 20th century, since industries were very interested in a source of low-cost energy. The Mond gas provided a boost to the gas engine industry in particular. For example, a large gas engine that used Mond gas was 5–6 times more efficient than a standard steam engine. This is primarily because Mond gas was produced from the lowest cost coal rather than steam coal, resulting in cheaper electricity at about 1/20 of the normal price. [3]

Modern use

The Mond gas was used primarily during the early 20th century, and its process was further developed by the Power Gas Corporation as the Lymn system; however, the gas has been widely forgotten. [3] [4]

The use of coal gases has become far less popular due to the adoption of natural gas in the 1960s.[ citation needed ] Natural gases were better for the environment because they burned more cleanly than other fuels such as coal and oil and could also be transported more safely and efficiently over sea.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Haber process</span> Main process of ammonia production

The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.

<span class="mw-page-title-main">Coke (fuel)</span> Hard fuel containing mostly carbon

Coke is a grey, hard, and porous coal-based fuel with a high carbon content and few impurities, made by heating coal or oil in the absence of air—a destructive distillation process. It is an important industrial product, used mainly in iron ore smelting, but also as a fuel in stoves and forges when air pollution is a concern.

<span class="mw-page-title-main">Producer gas</span> Obsolete form of gas fuel

Producer gas is fuel gas that is manufactured by blowing through a coke or coal fire with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the producer gas is low (mainly because of its high nitrogen content), and the technology is obsolete. Improvements over producer gas, also obsolete, include water gas where the solid fuel is treated intermittently with air and steam and, far more efficiently synthesis gas where the solid fuel is replaced with methane.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Pyrolysis</span> Thermal decomposition of materials at elevated temperatures in an inert atmosphere

The pyrolysis process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. The word is coined from the Greek-derived elements pyro "fire", "heat", "fever" and lysis "separating".

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.

The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

<span class="mw-page-title-main">Steam reforming</span> Method for producing hydrogen and carbon monoxide from hydrocarbon fuels

Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium:

In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen, carbon dioxide, methane, and water vapour —from coal and water, air and/or oxygen.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

<span class="mw-page-title-main">Fuel gas</span> Fuels which under ordinary conditions, are gaseous

Fuel gas is one of a number of fuels that under ordinary conditions are gaseous. Most fuel gases are composed of hydrocarbons, hydrogen, carbon monoxide, or mixtures thereof. Such gases are sources of energy that can be readily transmitted and distributed through pipes.

Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).

<span class="mw-page-title-main">Wood gas generator</span> Device that converts timber or charcoal into wood gas suitable for an internal combustion engine

A wood gas generator is a gasification unit which converts timber or charcoal into wood gas, a producer gas consisting of atmospheric nitrogen, carbon monoxide, hydrogen, traces of methane, and other gases, which – after cooling and filtering – can then be used to power an internal combustion engine or for other purposes. Historically wood gas generators were often mounted on vehicles, but present studies and developments concentrate mostly on stationary plants.

The Dakota Gasification Company is a synthetic natural gas producing company founded in 1984 in Beulah, North Dakota, United States. It is an operator of the Great Plains Synfuels Plant. The plant is located at 47°21′27.75″N101°50′28.72″W. The plant uses lignite coal to produce synthetic natural gas utilizing a coal gasification process. The plant processes 16 thousand tons of coal daily. Coal is oxidized to coal gas, which is then converted from a mixture of carbon monoxide, carbon dioxide and hydrogen to methane, by hydrogenation over a nickel catalyst. The synthetic natural gas is pipelined to the Northern Border Pipeline which transports gas from Canada, Montana and North Dakota to the Ventura, Iowa area, where the pipeline interconnects with many pipelines supplying the eastern United States. The Dakota Gasification Company is a subsidiary of the Basin Electric Power Cooperative which is located in Bismarck, North Dakota. On August 16, 2021, it was announced Bakken Energy would be acquiring the Dakota Gasification Company to be transformed to a blue hydrogen project.

Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer [coke] with air and gasifying it with steam". The caloric yield of this is about 10% of a modern syngas plant. Further making this technology unattractive, its precursor coke is expensive, whereas syngas uses cheaper precursor, mainly methane from natural gas.

Hydrogen production is the family of industrial methods for generating hydrogen gas. There are four main sources for the commercial production of hydrogen: natural gas, oil, coal, and electrolysis of water; which account for 48%, 30%, 18% and 4% of the world's hydrogen production respectively. Fossil fuels are the dominant source of industrial hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.

Rectisol is the trade name for an acid gas removal process that uses methanol as a solvent to separate acid gases such as hydrogen sulfide and carbon dioxide from valuable feed gas streams. By doing so, the feed gas is made more suitable for combustion and/or further processing. Rectisol is used most often to treat synthesis gas (primarily hydrogen and carbon monoxide) produced by gasification of coal or heavy hydrocarbons, as the methanol solvent is well able to remove trace contaminants such as ammonia, mercury, and hydrogen cyanide usually found in these gases. As an acid gas and large component of valuable feed gas streams, CO2 is separated during the methanol solvent regeneration.

<span class="mw-page-title-main">History of manufactured fuel gases</span>

The history of gaseous fuel, important for lighting, heating, and cooking purposes throughout most of the 19th century and the first half of the 20th century, began with the development of analytical and pneumatic chemistry in the 18th century. The manufacturing process for "synthetic fuel gases" typically consisted of the gasification of combustible materials, usually coal, but also wood and oil. The coal was gasified by heating the coal in enclosed ovens with an oxygen-poor atmosphere. The fuel gases generated were mixtures of many chemical substances, including hydrogen, methane, carbon monoxide and ethylene, and could be burnt for heating and lighting purposes. Coal gas, for example, also contains significant quantities of unwanted sulfur and ammonia compounds, as well as heavy hydrocarbons, and so the manufactured fuel gases needed to be purified before they could be used.

Lower-temperature fuel cell types such as the proton exchange membrane fuel cell, phosphoric acid fuel cell, and alkaline fuel cell require pure hydrogen as fuel, typically produced from external reforming of natural gas. However, fuels cells operating at high temperature such as the solid oxide fuel cell (SOFC) are not poisoned by carbon monoxide and carbon dioxide, and in fact can accept hydrogen, carbon monoxide, carbon dioxide, steam, and methane mixtures as fuel directly, because of their internal shift and reforming capabilities. This opens up the possibility of efficient fuel cell-based power cycles consuming solid fuels such as coal and biomass, the gasification of which results in syngas containing mostly hydrogen, carbon monoxide and methane which can be cleaned and fed directly to the SOFCs without the added cost and complexity of methane reforming, water gas shifting and hydrogen separation operations which would otherwise be needed to isolate pure hydrogen as fuel. A power cycle based on gasification of solid fuel and SOFCs is called an Integrated Gasification Fuel Cell (IGFC) cycle; the IGFC power plant is analogous to an integrated gasification combined cycle power plant, but with the gas turbine power generation unit replaced with a fuel cell power generation unit. By taking advantage of intrinsically high energy efficiency of SOFCs and process integration, exceptionally high power plant efficiencies are possible. Furthermore, SOFCs in the IGFC cycle can be operated so as to isolate a carbon dioxide-rich anodic exhaust stream, allowing efficient carbon capture to address greenhouse gas emissions concerns of coal-based power generation.

References

  1. 1 2 "Ludwig Mond". Web. HowStuffWorks. July 2010. Retrieved 17 Oct 2012.
  2. 1 2 3 Mond Gas. R.D. Wood & Co. 1903. p.  96 . Retrieved 14 Nov 2012.
  3. 1 2 3 4 5 Boak, Ken. "Gasification Historical archive - Mond Gas". Archived from the original on April 15, 2013. Retrieved October 17, 2012.
  4. 1 2 3 4 5 Thomas, Russell. "Producer Gas Plants". Web. academia.edu. Retrieved 17 Oct 2012.
  5. "Bures, Gas Works". Web. Retrieved 17 Oct 2012.