Gas burner

Last updated
Propane burner used with forced air into a metal melting furnace. Propane air burner.jpg
Propane burner used with forced air into a metal melting furnace.
Propane burner with a Bunsen flame Propane-burner.jpg
Propane burner with a Bunsen flame
Oxy-Acetylene for cutting through steel rails Railway-cutting.jpg
Oxy-Acetylene for cutting through steel rails
Flame of a gas and oil, in a dual burner Fernheizzentrale Bad Steben 2010-2.JPG
Flame of a gas and oil, in a dual burner

A gas burner is a device that produces a non-controlled flame by mixing a fuel gas such as acetylene, natural gas, or propane with an oxidizer such as the ambient air or supplied oxygen, and allowing for ignition and combustion.

Contents

The flame is generally used for the heat, infrared radiation, or visible light it produces. Some burners, such as gas flares, dispose of unwanted or uncontainable flammable gases. Some burners are operated to produce carbon black.

The gas burner has many applications such as soldering, brazing, and welding, the latter using oxygen instead of air for producing a hotter flame, which is required for melting steel. Chemistry laboratories use natural-gas fueled Bunsen burners. In domestic and commercial settings gas burners are commonly used in gas stoves and cooktops. For melting metals with melting points of up to 1100 °C (such as copper, silver, and gold), a propane burner with a natural drag of air can be used. For higher temperatures, acetylene is commonly used in combination with oxygen.

Flame temperatures of common gases and fuels

Gas / FuelsFlame temperature
Propane in air1980 °C 3596 °F
Butane in air1970 °C 3578 °F
Wood in air (normally not reached in a wood stove)1980 °C 3596 °F
Acetylene in air2550 °C 4622 °F
Methane (natural gas) in air1950 °C 3542 °F
Hydrogen in air2111 °C 3831 °F
Propane with oxygen2800 °C 5072 °F
Acetylene in oxygen3100 °C 5612 °F
Propane-butane mix with air1970 °C 3578 °F
Coal in air (blast furnace)1900 °C 3452 °F
Cyanogen (C2N2) in oxygen4525 °C 8177 °F
Dicyanoacetylene (C4N2) in oxygen (highest flame temperature)4982 °C 9000 °F

The above data is given with the following assumptions:

Flammability limits and ignition temperatures of common gases

Flammability limit lower, in % Flammability limit upper, in % Ignition temperatures
Natural gas 4.715482-632 °C
Propane 2.159.6493-604 °C
Butane 1.98.5482-538 °C
Acetylene 2.581305 °C
Hydrogen 475500 °C
Ammonia 1625651 °C
Carbon monoxide 12.574609 °C
Ethylene 3.410.8490 °C

(Atmosphere is air at 20 degrees Celsius.)

Combustion values of common gases

GasCombustion value
(Btu/ft³)(MJ/m³)
Natural gas (methane)950 to 1,15035 to 43
Propane 2,57295.8
Propane-butane mix2,500 to 3,20090 to 120
Butane 3,225120.1

Related Research Articles

<span class="mw-page-title-main">Bunsen burner</span> Laboratory device used to make fire from fuel and oxidizer gases

A Bunsen burner, named after Robert Bunsen, is a kind of ambient air gas burner used as laboratory equipment; it produces a single open gas flame, and is used for heating, sterilization, and combustion.

<span class="mw-page-title-main">Combustion</span> Chemical reaction

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

<span class="mw-page-title-main">Fire</span> Rapid and hot oxidation of a material

Fire is the rapid oxidation of a material in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames are produced. The flame is the visible portion of the fire. Flames consist primarily of carbon dioxide, water vapor, oxygen and nitrogen. If hot enough, the gases may become ionized to produce plasma. Depending on the substances alight, and any impurities outside, the color of the flame and the fire's intensity will be different.

<span class="mw-page-title-main">Propane</span> Hydrocarbon compound

Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane is one of a group of liquefied petroleum gases. The others include propylene, butane, butylene, butadiene, isobutylene, and mixtures thereof. Propane has lower volumetric energy density, but higher gravimetric energy density and burns more cleanly than gasoline and coal.

<span class="mw-page-title-main">Flame</span> Visible, gaseous part of a fire

A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density they are then considered plasma.

<span class="mw-page-title-main">Fire triangle</span> Model for understanding the ingredients for fires

The fire triangle or combustion triangle is a simple model for understanding the necessary ingredients for most fires.

<span class="mw-page-title-main">MAPP gas</span> Fuel gas based on a stabilized mixture of methylacetylene and propadiene

MAPP gas was a trademarked name, belonging to The Linde Group, a division of the former global chemical giant Union Carbide, for a fuel gas based on a stabilized mixture of methylacetylene (propyne), propadiene and propane. The name comes from the original chemical composition, methylacetylene-propadiene propane. "MAPP gas" is also widely used as a generic name for UN 1060 stabilised methylacetylene-propadiene.

<span class="mw-page-title-main">Oxyhydrogen</span> Explosive mixture of hydrogen and oxygen gases

Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough to achieve maximum efficiency; in practice a ratio 4:1 or 5:1 is needed to avoid an oxidizing flame.

<span class="mw-page-title-main">Adiabatic flame temperature</span> Temperature reached by a flame under ideal conditions

In the study of combustion, the adiabatic flame temperature is the temperature reached by a flame under ideal conditions. It is an upper bound of the temperature that is reached in actual processes.

<span class="mw-page-title-main">Kerosene heater</span> Typically a portable, unvented, kerosene-fueled, space heating device

A kerosene heater, also known as a paraffin heater, is typically a portable, unvented, kerosene-fueled, space heating device. In Japan and other countries, they are a primary source of home heat. In the United States and Australia, they are a supplemental heat or a source of emergency heat during a power outage. Most kerosene heaters produce between 3.3 and 6.8 kilowatts.

<span class="mw-page-title-main">LO-NOx burner</span>

A LO NOx burner is a type of burner that is typically used in utility boilers to produce steam and electricity.

<span class="mw-page-title-main">Propane torch</span> Tool for generating heat and flame by burning propane

A propane torch is a tool normally used for the application of flame or heat which uses propane, a hydrocarbon gas, for its fuel and ambient air as its combustion medium. Propane is one of a group of by-products of the natural gas and petroleum industries known as liquefied petroleum gas (LPG). Propane and other fuel torches are most commonly used in the manufacturing, construction and metal-working industries.

<span class="mw-page-title-main">Thermal spraying</span> Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

<span class="mw-page-title-main">Oxy-fuel combustion process</span> Burning of fuel with pure oxygen

Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame. It has also received a lot of attention in recent decades as a potential carbon capture and storage technology.

<span class="mw-page-title-main">Oxy-fuel welding and cutting</span> Metalworking technique using a fuel and oxygen

Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localised melting of the workpiece material in a room environment. A common propane/air flame burns at about 2,250 K, a propane/oxygen flame burns at about 2,526 K, an oxyhydrogen flame burns at 3,073 K and an acetylene/oxygen flame burns at about 3,773 K.

<span class="mw-page-title-main">Blowtorch</span> Fuel-burning tool for applying flame and heat for various applications

A blowtorch, also referred to as a blowlamp, is an ambient air fuel-burning gas lamp used for applying flame and heat to various applications, usually metalworking.

<span class="mw-page-title-main">Luminous flame</span>

A luminous flame is a burning flame which is brightly visible. Much of its output is in the form of visible light, as well as heat or light in the non-visible wavelengths.

Flame treatment is the application of a gas flame to the surface of a material to improve adhesion.

<span class="mw-page-title-main">Industrial furnace</span> Device used for providing heat in industrial applications

An industrial furnace, also known as a direct heater or a direct fired heater, is a device used to provide heat for an industrial process, typically higher than 400 degrees Celsius. They are used to provide heat for a process or can serve as reactor which provides heats of reaction. Furnace designs vary as to its function, heating duty, type of fuel and method of introducing combustion air. Heat is generated by an industrial furnace by mixing fuel with air or oxygen, or from electrical energy. The residual heat will exit the furnace as flue gas. These are designed as per international codes and standards the most common of which are ISO 13705 / American Petroleum Institute (API) Standard 560. Types of industrial furnaces include batch ovens, metallurgical furnaces, vacuum furnaces, and solar furnaces. Industrial furnaces are used in applications such as chemical reactions, cremation, oil refining, and glasswork.

<span class="mw-page-title-main">Steam cracking</span> Petrochemical process to break down saturated hydrocarbons in smaller molecules

Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated, hydrocarbons. It is the principal industrial method for producing the lighter alkenes, including ethene and propene. Steam cracker units are facilities in which a feedstock such as naphtha, liquefied petroleum gas (LPG), ethane, propane or butane is thermally cracked through the use of steam in steam cracking furnaces to produce lighter hydrocarbons. The propane dehydrogenation process may be accomplished through different commercial technologies. The main differences between each of them concerns the catalyst employed, design of the reactor and strategies to achieve higher conversion rates.

References