First flush

Last updated
Urban runoff entering a storm drain Storm Drain.JPG
Urban runoff entering a storm drain

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters. [1] [2] :216

Contents

First flush effect

The term "first flush effect" refers to rapid changes in water quality (pollutant concentration or load) that occur after early season rains. Soil and vegetation particles wash into streams; sediments and other accumulated organic particles on the river bed are re-suspended, and dissolved substances from soil and shallow groundwater can be flushed into streams. Recent research has shown that this effect has not been observed in relatively pervious areas. [2] :216

The term is often also used to address the first flood after a dry period, which is supposed to contain higher concentrations than a subsequent one. This is referred to as "first flush flood." There are various definitions of the first flush phenomenon. [3] [4] [5]

First foul flush

Storm water runoff in a combined sewer produces a first foul flush with a suspension of accumulated sanitary solids from the sewer in addition to pollutants from surface runoff. Inflow may produce a foul flush effect in sanitary sewers if flows peak during wet weather. As flow rates increase above average, a relatively small percentage of the total flow contains a disproportionately large percentage of the total pollutant mass associated with overall flow volume through the peak flow event. Sewer solids deposition during low flow periods and subsequent resuspension during peak flow events is the major pollutant source for the first-flush combined-sewer overflow (CSO) phenomenon. [6]

Sanitary sewage solids can either go through the system or settle out in laminar flow portions of the sewer to be available for washout during peak flows. The wetted perimeter of sewers may also be colonized by biofilm nourished by soluble sanitary wastes. Hydraulic design is the underlying reason for solids deposition in sewers. Combined sewers sized for peak runoff events expected once a decade can carry up to 1,000 times the average sanitary flow. Less dramatically oversized sewers are common in new developments and near the upstream end of collection systems. Suspended solids may accumulate when low-flow fluid velocities generate insufficient turbulence. Solids deposition is greatest where velocities are low during dry weather. In large combined sewers it may be impossible to attain sanitary sewage velocities generating sufficient turbulence to keep solids suspended during dry weather. [6]

Biofilm and previously deposited solids may be scoured and re-entrained during peak flow turbulence. [7] The high pollution load in wastewater at the beginning of a runoff event occurs when increased flow rate erodes accumulated sewer sediment. [8] Erosion of sediments in sewers can release pollutants in concentrations exceeding levels found in contributing sources. The initial highly polluting foul flush is released at the start of wet weather flow during speedy erosion of a weak layer of highly concentrated surficial sediment bed-load. [9] When conditions favor dry-weather solids deposition, the first foul flush may contain as much as 30 percent of the annual total suspended solids discharged to a combined sewer system. Combined sewer suspended solids concentrations of several thousand milligrams per liter (mg/L) may be observed during the first foul flush. [6]

Pollutant concentration levels are influenced by the age and condition of the collection system and the amount of infiltration/inflow in comparison to the sanitary flow. Pollutant concentration peaks depend on size and slope of the piping system, time interval between storms, and solids accumulation in the collection system. Steeper sewer gradients and pipe bottom shapes that maintain high velocity flow during low-flow conditions will reduce sediment accumulation in sewers; and periodic sewer flushing of individual lines during dry weather may move accumulated solids to the wastewater treatment plant before stormwater runoff causes simultaneous peak flow in the entire collection system. [10]

Because the reference of the first flush is not always clear, the terms "concentration-based first flush" (CBFF) and "mass-based first flush" (MBFF) have been introduced. [11]

Apart from this definition, there are a number of rating parameters in literature to determine the occurrence of a first flush. [11]

Rainwater harvesting

In the context of rainwater harvesting, a first flush diverter is a simple device that is designed to protect a storage cistern from contamination by first flush runoff. This leads to a higher quality of water captured, and less silting of the cistern over time in dusty areas. The diverted first flush water is used for irrigation or other purposes in a fashion similar to greywater. [12] Although many commercial versions are available, these devices are frequently constructed of spare pipe when the cistern is initially installed or thereafter. See Texas Manual on Rainwater Harvesting for calculations on sizing. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Sewerage</span> Infrastructure that conveys sewage or surface runoff using sewers

Sewerage is the infrastructure that conveys sewage or surface runoff using sewers. It encompasses components such as receiving drains, manholes, pumping stations, storm overflows, and screening chambers of the combined sewer or sanitary sewer. Sewerage ends at the entry to a sewage treatment plant or at the point of discharge into the environment. It is the system of pipes, chambers, manholes, etc. that conveys the sewage or storm water.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Sanitary sewer</span> Underground pipe for transporting sewage

A sanitary sewer is an underground pipe or tunnel system for transporting sewage from houses and commercial buildings to a sewage treatment plant or disposal. Sanitary sewers are a type of gravity sewer and are part of an overall system called a "sewage system" or sewerage. Sanitary sewers serving industrial areas may also carry industrial wastewater. In municipalities served by sanitary sewers, separate storm drains may convey surface runoff directly to surface waters. An advantage of sanitary sewer systems is that they avoid combined sewer overflows. Sanitary sewers are typically much smaller in diameter than combined sewers which also transport urban runoff. Backups of raw sewage can occur if excessive stormwater inflow or groundwater infiltration occurs due to leaking joints, defective pipes etc. in aging infrastructure.

<span class="mw-page-title-main">Storm drain</span> Infrastructure for draining excess rain and ground water from impervious surfaces

A storm drain, storm sewer, surface water drain/sewer, or stormwater drain is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.

<span class="mw-page-title-main">Nationwide Urban Runoff Program</span> US pollution research program

The Nationwide Urban Runoff Program (NURP) was a research project conducted by the United States Environmental Protection Agency (EPA) between 1979 and 1983. It was the first comprehensive study of urban stormwater pollution across the United States.

<span class="mw-page-title-main">Bioswale</span> Landscape elements designed to manage surface runoff water

Bioswales are channels designed to concentrate and convey stormwater runoff while removing debris and pollution. Bioswales can also be beneficial in recharging groundwater.

<span class="mw-page-title-main">Combined sewer</span> Sewage collection system of pipes and tunnels designed to also collect surface runoff

A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.

The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">Sanitary sewer overflow</span> Discharge of untreated sewage

Sanitary sewer overflow (SSO) is a condition in which untreated sewage is discharged from a sanitary sewer into the environment prior to reaching sewage treatment facilities. When caused by rainfall it is also known as wet weather overflow. Causes of sanitary sewer overflows include: Blockage of sewer lines, infiltration/Inflow of excessive stormwater into sewer lines during heavy rainfall, malfunction of pumping station lifts or electrical power failure, broken sewer lines. Prevention of such overflow events involves regular maintenance and timely upgrades of infrastructure.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and industry, although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients and other pollutants into surface water.

Infiltration/Inflow is the process of groundwater, or water from sources other than domestic wastewater, entering sanitary sewers. I/I causes dilution in sanitary sewers, which decreases the efficiency of treatment, and may cause sewage volumes to exceed design capacity. Although inflow is technically different from infiltration, it may be difficult to determine which is causing dilution problems in inaccessible sewers. The United States Environmental Protection Agency defines the term infiltration/inflow as combined contributions from both.

<span class="mw-page-title-main">Water-sensitive urban design</span> Integrated approach to urban water cycle

Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.

A runoff footprint is the total surface runoff that a site produces over the course of a year. According to the United States Environmental Protection Agency (EPA) stormwater is "rainwater and melted snow that runs off streets, lawns, and other sites". Urbanized areas with high concentrations of impervious surfaces like buildings, roads, and driveways produce large volumes of runoff which can lead to flooding, sewer overflows, and poor water quality. Since soil in urban areas can be compacted and have a low infiltration rate, the surface runoff estimated in a runoff footprint is not just from impervious surfaces, but also pervious areas including yards. The total runoff is a measure of the site’s contribution to stormwater issues in an area, especially in urban areas with sewer overflows. Completing a runoff footprint for a site allows a property owner to understand what areas on his or her site are producing the most runoff and what scenarios of stormwater green solutions like rain barrels and rain gardens are most effective in mitigating this runoff and its costs to the community.

<span class="mw-page-title-main">Gravity sewer</span> Conduit which removes wastewater by use of gravity

A gravity sewer is a conduit utilizing the energy resulting from a difference in elevation to remove unwanted water. The term sewer implies removal of sewage or surface runoff rather than water intended for use; and the term gravity excludes water movement induced through force mains or vacuum sewers. Most sewers are gravity sewers; because gravity offers reliable water movement with no energy costs wherever grades are favorable. Gravity sewers may drain to sumps where pumping is required to either force sewage to a distant location or lift sewage to a higher elevation for entry into another gravity sewer, and lift stations are often required to lift sewage into sewage treatment plants. Gravity sewers can be either sanitary sewers, combined sewers, storm sewers or effluent sewers.

References

  1. Metcalf, Leonard; Eddy, Harrison P. (1916). American Sewerage Practice: Disposal of Sewage. Vol. III. New York: McGraw-Hill. p. 154.
  2. 1 2 Alex Maestre and Robert Pitt; Center for Watershed Protection (2005)."The National Stormwater Quality Database, Version 1.1: A Compilation and Analysis of NPDES Stormwater Monitoring Information." Archived 2016-03-03 at the Wayback Machine Report prepared for U.S. Environmental Protection Agency (EPA), Washington, DC. September 4, 2005.
  3. Australian Government, Department of the Environment and Heritage. Canberra. "Glossary of Terms."
  4. Gupta, K.; Saul, A.J. (1996). "Specific Relationships for the First Flush Load in Combined Sewer Flows". Water Research. 30 (5): 1244–1252. doi:10.1016/0043-1354(95)00282-0. ISSN   0043-1354.
  5. Geiger, W. (1987). "Flushing Effects in Combined Sewer Systems". Proc. 4th Int. Conf. Urban Drainage, Lausanne, Switzerland: 40–46.
  6. 1 2 3 Fan, Chi-Yuan; Field, Richard; Lai, Fu-hsiung (2003). Sewer-Sediment Control: Overview of an EPA Wet-Weather Flow Research Program (Report). EPA. EPA 600/J-03/188.
  7. Fraser, A.G.; Sakrabani, R.; Ashley, R.M.; Johnstone, F.M. (2002). "Managing sewer solids for the reduction of foul flush effects--Forfar WTP". Water Science & Technology. US National Library of Medicine National Institutes of Health. 45 (3): 265–272. doi:10.2166/wst.2002.0087. PMID   11902479.
  8. Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M.; Hvitved-Jacobsen, Thorkild. "Biodegradability of Organic Matter associated with Sewer Sediments during First Flush" (PDF). White Rose Research Online. University of Sheffield . Retrieved 12 March 2016.
  9. Ashley, R.M.; Wotherspoon, D.J.J.; Coghlan, B.P.; McGregor, I. (1992). "The Erosion and Movement of Sediments and Associated Pollutants in Combined Sewers". Water Science & Technology. IWA Publishing. 73 (5): 101–114. doi:10.2166/wst.1992.0184.
  10. Combined Sewer Overflow Control Manual (Report). EPA. September 1993. pp. 5, 9–10&19. EPA/625/R-93/003.
  11. 1 2 Sansalone, John; Christina, Chad M. (November 2004). "First flush concepts for dissolved solids in small impervious watersheds". Journal of Environmental Engineering. 130 (11): 1301–1314. doi:10.1061/(ASCE)0733-9372(2004)130:11(1301). ISSN   0733-9372.
  12. University of Hawai`i Agricultural Extension. Manoa, HI (2008). "Rainwater Catchment Solutions: First-Flush Diverters." Brochure.
  13. Texas Manual on Rainwater Harvesting (PDF) (Report) (3rd ed.). Austin, TX: Texas Water Development Board. 2005. pp. 8–9.

Further reading