Nationwide Urban Runoff Program

Last updated
Map showing locations of 28 NURP projects NURP project map.jpg
Map showing locations of 28 NURP projects

The Nationwide Urban Runoff Program (NURP) was a research project conducted by the United States Environmental Protection Agency (EPA) between 1979 and 1983. It was the first comprehensive study of urban stormwater pollution across the United States. [1]

Contents

Study objectives

The principal focus areas of the study consisted of:

A major component of the project was an analysis of water samples collected during 2,300 storms in 28 major metropolitan areas. [1] :6–1

Findings

Among the conclusions of the report are the following:

An interesting finding of the NURP was that street sweeping was considered to be, "ineffective as a technique for improving the quality of urban runoff". [2] :15

Impact of the report

In 1987, the results of the report were used as the basis of an amendment to the Clean Water Act requiring local governments and industry to address the pollution sources indicated by the report. The amendment requires all industrial stormwater dischargers (including many construction sites) and municipal storm sewer systems, affecting virtually all cities and towns in the country, to obtain discharge permits. [3] EPA published national stormwater regulations in 1990 and 1999. [4] [5] EPA and state agencies began issuing stormwater permits in 1991. See Stormwater management permits.

About "NURP ponds"

The term "NURP ponds" refers to retention basins (also called "wet ponds") that capture sediment from stormwater runoff as it is detained, and that are designed to perform to the level of the more effective ponds observed in the NURP studies. [6] Some practitioners may assume that a "NURP pond" design conforms to some particular standard issued by EPA, but in fact EPA has issued no regulations or other requirements regarding the design of stormwater ponds. (However, some states and municipalities have issued stormwater design manuals, and these publications may include a reference to a "NURP pond".)

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Storm drain</span> Infrastructure for draining excess rain and ground water from impervious surfaces

A storm drain, storm sewer, surface water drain/sewer, or stormwater drain is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.

<span class="mw-page-title-main">Clean Water Act</span> 1972 U.S. federal law regulating water pollution

The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibilities of the states in addressing pollution and providing assistance to states to do so, including funding for publicly owned treatment works for the improvement of wastewater treatment; and maintaining the integrity of wetlands.

Sewage disposal regulation and administration describes the governance of sewage treatment and disposal.

<span class="mw-page-title-main">Detention basin</span> Flood control measure

A detention basin or retarding basin is an excavated area installed on, or adjacent to, tributaries of rivers, streams, lakes or bays to protect against flooding and, in some cases, downstream erosion by storing water for a limited period of time. These basins are also called dry ponds, holding ponds or dry detention basins if no permanent pool of water exists.

<span class="mw-page-title-main">Retention basin</span> Artificial pond for stormwater runoff

A retention basin, sometimes called a retention pond,wet detention basin, or storm water management pond (SWMP), is an artificial pond with vegetation around the perimeter and a permanent pool of water in its design. It is used to manage stormwater runoff, for protection against flooding, for erosion control, and to serve as an artificial wetland and improve the water quality in adjacent bodies of water.

<span class="mw-page-title-main">Combined sewer</span> Sewage collection system of pipes and tunnels designed to also collect surface runoff

A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.

The United States Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

<span class="mw-page-title-main">First flush</span> Initial surface runoff of a rainstorm

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">Sustainable drainage system</span>

Sustainable drainage systems are a collection of water management practices that aim to align modern drainage systems with natural water processes and are part of a larger green infrastructure strategy. SuDS efforts make urban drainage systems more compatible with components of the natural water cycle such as storm surge overflows, soil percolation, and bio-filtration. These efforts hope to mitigate the effect human development has had or may have on the natural water cycle, particularly surface runoff and water pollution trends.

<span class="mw-page-title-main">Best management practice for water pollution</span> Term used in the United States and Canada to describe a type of water pollution control

Best management practices (BMPs) is a term used in the United States and Canada to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in stormwater management and wetland management, BMPs may refer to a principal control or treatment technique as well.

<span class="mw-page-title-main">Infiltration basin</span>

An infiltration basin is a form of engineered sump or percolation pond that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. It is essentially a shallow artificial pond that is designed to infiltrate stormwater through permeable soils into the groundwater aquifer. Infiltration basins do not release water except by infiltration, evaporation or emergency overflow during flood conditions.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

A Discharge Monitoring Report (DMR) is a United States regulatory term for a periodic water pollution report prepared by industries, municipalities and other facilities discharging to surface waters. The facilities collect wastewater samples, conduct chemical and/or biological tests of the samples, and submit reports to a state agency or the United States Environmental Protection Agency (EPA). All point source dischargers to ”Waters of the U.S.” must obtain a National Pollution Discharge Elimination System (NPDES) permit from the appropriate agency, and many permittees are required to file DMRs.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and industry, although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients and other pollutants into surface water.

<span class="mw-page-title-main">United States regulation of point source water pollution</span> Overview of the regulation of point source water pollution in the United States of America

Point source water pollution comes from discrete conveyances and alters the chemical, biological, and physical characteristics of water. In the United States, it is largely regulated by the Clean Water Act (CWA). Among other things, the Act requires dischargers to obtain a National Pollutant Discharge Elimination System (NPDES) permit to legally discharge pollutants into a water body. However, point source pollution remains an issue in some water bodies, due to some limitations of the Act. Consequently, other regulatory approaches have emerged, such as water quality trading and voluntary community-level efforts.

Industrial stormwater is runoff from precipitation that lands on industrial sites. This runoff is often polluted by materials that are handled or stored on the sites, and the facilities are subject to regulations to control the discharges.

References

  1. 1 2 3 Results of the Nationwide Urban Runoff Program: Volume 1 – Final Report (PDF) (Report). Washington, DC: U.S. Environmental Protection Agency (EPA). December 1983. Water Planning Division.
  2. 1 2 Results of the Nationwide Urban Runoff Program: Executive Summary (PDF) (Report). EPA. December 1983.
  3. United States. Water Quality Act of 1987. Pub. L.   100–4, February 4, 1987. Added CWA section 402(p), 33 U.S.C.   § 1342(p) , "Municipal and Industrial Stormwater Discharges."
  4. EPA (1990-11-16). "National Pollutant Discharge Elimination System Permit Application Regulations for Storm Water Discharges". ("Phase I" stormwater rule.) Federal Register, 44 FR 47990.
  5. EPA (1999-12-08). "Regulations for Revision of the Water Pollution Control Program Addressing Stormwater Discharges; Final Rule." ("Phase II" stormwater rule.) Federal Register, 64 FR 68722.
  6. For example, see this fact sheet on Wet Ponds published by the Metropolitan Council, St. Paul, MN. "Urban Small Sites Best Management Practice Manual: Wet Ponds." Archived 2007-10-03 at the Wayback Machine