Best management practice for water pollution

Last updated
A retention pond for treatment of urban runoff (stormwater). Trounce Pond.jpg
A retention pond for treatment of urban runoff (stormwater).

Best management practices (BMPs) is a term used in the United States and Canada to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in stormwater management (both urban and rural) and wetland management, BMPs may refer to a principal control or treatment technique as well.

Contents

Terminology

Beginning in the 20th century, designers of industrial and municipal sewage pollution controls typically utilized engineered systems (e.g. filters, clarifiers, biological reactors) to provide the central components of pollution control systems, and used the term "BMPs" to describe the supporting functions for these systems, such as operator training and equipment maintenance.

Stormwater management, as a specialized area within the field of environmental engineering, emerged later in the 20th century, and some practitioners have used the term BMP to describe both structural or engineered control devices and systems (e.g. retention ponds) to treat polluted stormwater, as well as operational or procedural practices (e.g. minimizing use of chemical fertilizers and pesticides). Other practitioners prefer to use the term Stormwater control measure, due to the varied definitions of the term "BMP" and its use in non-stormwater practice. [1]

U.S. Clean Water Act References to "BMP"

Congress referred to BMP in several sections of the U.S. Clean Water Act (CWA) but did not define the term.

EPA definitions

In implementing the CWA, the U.S. Environmental Protection Agency (EPA) defined BMP in the federal wastewater permit regulations, initially to refer to auxiliary procedures for industrial wastewater controls.

...schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the United States, BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage. [7]

Later the Agency added a reference to stormwater management BMPs.

...each NPDES permit shall include conditions meeting the following requirements when applicable... (k) Best management practices (BMPs) to control or abate the discharge of pollutants when: ... (2) Authorized under section 402(p) of the CWA for the control of storm water discharges... [8]

Industrial wastewater BMPs

Industrial wastewater BMPs are considered an adjunct to engineered treatment systems. Typical BMPs include operator training, maintenance practices, and spill control procedures for treatment chemicals. [9] There are also many BMPs available which are specific to particular industrial processes, for example:

Stormwater management BMPs

Stormwater management BMPs are control measures taken to mitigate changes to both quantity and quality of urban runoff caused through changes to land use. Generally BMPs focus on water quality problems caused by increased impervious surfaces from land development. [11] BMPs are designed to reduce stormwater volume, peak flows, and/or nonpoint source pollution through evapotranspiration, infiltration, detention, and filtration or biological and chemical actions. [12] BMPs also can improve receiving-water quality by extending the duration of outflows in comparison to inflow duration (known as hydrograph extension), which dilutes the stormwater discharged into a larger volume of upstream flow. [13] [14] Although structural BMPs can be effective for reducing stormwater loads to receiving waters, [15] [16] [17] studies indicate that they cannot improve in-stream water quality where receiving-water quality is poor. [17] [18] [19]

Stormwater BMPs can be classified as "structural" (i.e., devices installed or constructed on a site such as silt fences, rock filter dams, fiber rolls (also called erosion control logs or excelsior wattles), sediment traps and numerous other proprietary products) or "non-structural" (procedures, such as modified landscaping practices, soil disturbing activity scheduling, or street sweeping). There are a variety of BMPs available; selection typically depends on site characteristics and pollutant removal objectives. EPA has published a series of stormwater BMP fact sheets for use by local governments, builders and property owners. [20]

Stormwater management BMPs can be also categorized into four basic types:

  1. Storage practices: ponds; recovery; green infrastructure design.
  2. Vegetative practices: buffers; channels; green roofs; wetlands; functional art;[ further explanation needed ] stormwater wetland park design; wetland park engineering & design.
  3. Filtration/Infiltration practices: filtering; infiltration; rain gardens; porous pavement; civic infrastructure and design; functional stormwater design.
  4. Water sensitive development: better site design (revisions of local land development rules); [21] open space site design; low impact development.

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

<span class="mw-page-title-main">Clean Water Act</span> 1972 U.S. federal law regulating water pollution

The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibilities of the states in addressing pollution and providing assistance to states to do so, including funding for publicly owned treatment works for the improvement of wastewater treatment; and maintaining the integrity of wetlands.

<span class="mw-page-title-main">Nationwide Urban Runoff Program</span> US pollution research program

The Nationwide Urban Runoff Program (NURP) was a research project conducted by the United States Environmental Protection Agency (EPA) between 1979 and 1983. It was the first comprehensive study of urban stormwater pollution across the United States.

<span class="mw-page-title-main">Concentrated animal feeding operation</span> Type of American intensive animal farming

In animal husbandry, a concentrated animal feeding operation (CAFO), as defined by the United States Department of Agriculture (USDA), is an intensive animal feeding operation (AFO) in which over 1,000 animal units are confined for over 45 days a year. An animal unit is the equivalent of 1,000 pounds of "live" animal weight. A thousand animal units equates to 700 dairy cows, 1,000 meat cows, 2,500 pigs weighing more than 55 pounds (25 kg), 10,000 pigs weighing under 55 pounds, 10,000 sheep, 55,000 turkeys, 125,000 chickens, or 82,000 egg laying hens or pullets.

<span class="mw-page-title-main">Retention basin</span> Artificial pond for stormwater runoff

A retention basin, sometimes called a retention pond,wet detention basin, or storm water management pond (SWMP), is an artificial pond with vegetation around the perimeter and a permanent pool of water in its design. It is used to manage stormwater runoff, for protection against flooding, for erosion control, and to serve as an artificial wetland and improve the water quality in adjacent bodies of water.

<span class="mw-page-title-main">Combined sewer</span> Sewage collection system of pipes and tunnels designed to also collect surface runoff

A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

<span class="mw-page-title-main">First flush</span> Initial surface runoff of a rainstorm

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">DSSAM Model</span> Water quality computer simulation

The DSSAM Model is a computer simulation developed for the Truckee River to analyze water quality impacts from land use and wastewater management decisions in the Truckee River Basin. This area includes the cities of Reno and Sparks, Nevada as well as the Lake Tahoe Basin. The model is historically and alternatively called the Earth Metrics Truckee River Model. Since original development in 1984-1986 under contract to the U.S. Environmental Protection Agency (EPA), the model has been refined and successive versions have been dubbed DSSAM II and DSSAM III. This hydrology transport model is based upon a pollutant loading metric called Total maximum daily load (TMDL). The success of this flagship model contributed to the Agency's broadened commitment to the use of the underlying TMDL protocol in its national policy for management of most river systems in the United States.

A total maximum daily load (TMDL) is a regulatory term in the U.S. Clean Water Act, describing a plan for restoring impaired waters that identifies the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

A Discharge Monitoring Report (DMR) is a United States regulatory term for a periodic water pollution report prepared by industries, municipalities and other facilities discharging to surface waters. The facilities collect wastewater samples, conduct chemical and/or biological tests of the samples, and submit reports to a state agency or the United States Environmental Protection Agency (EPA). All point source dischargers to ”Waters of the U.S.” must obtain a National Pollution Discharge Elimination System (NPDES) permit from the appropriate agency, and many permittees are required to file DMRs.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and manufacturing industries—although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients, and other pollutants into surface water. This has led to the need for more improvement in water quality as it is still threatened and not fully safe.

<span class="mw-page-title-main">Nonpoint source water pollution regulations in the United States</span>

Nonpoint source (NPS) water pollution regulations are environmental regulations that restrict or limit water pollution from diffuse or nonpoint effluent sources such as polluted runoff from agricultural areas in a river catchments or wind-borne debris blowing out to sea. In the United States, governments have taken a number of legal and regulatory approaches to controlling NPS effluent. Nonpoint water pollution sources include, for example, leakage from underground storage tanks, storm water runoff, atmospheric deposition of contaminants, and golf course, agricultural, and forestry runoff.

<span class="mw-page-title-main">United States regulation of point source water pollution</span>

Point source water pollution comes from discrete conveyances and alters the chemical, biological, and physical characteristics of water. In the United States, it is largely regulated by the Clean Water Act (CWA). Among other things, the Act requires dischargers to obtain a National Pollutant Discharge Elimination System (NPDES) permit to legally discharge pollutants into a water body. However, point source pollution remains an issue in some water bodies, due to some limitations of the Act. Consequently, other regulatory approaches have emerged, such as water quality trading and voluntary community-level efforts.

<span class="mw-page-title-main">Stochastic empirical loading and dilution model</span> Stormwater quality model

The stochastic empirical loading and dilution model (SELDM) is a stormwater quality model. SELDM is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. Although SELDM is, nominally, a highway runoff model is can be used to estimate flows concentrations and loads of runoff-quality constituents from other land use areas as well. SELDM was developed by the U.S. Geological Survey so the model, source code, and all related documentation are provided free of any copyright restrictions according to U.S. copyright laws and the USGS Software User Rights Notice. SELDM is widely used to assess the potential effect of runoff from highways, bridges, and developed areas on receiving-water quality with and without the use of mitigation measures. Stormwater practitioners evaluating highway runoff commonly use data from the Highway Runoff Database (HRDB) with SELDM to assess the risks for adverse effects of runoff on receiving waters.

References

  1. National Research Council, Committee on Reducing Stormwater Discharge Contributions to Water Pollution (2009). "5. Stormwater Management Approaches". Urban Stormwater Management in the United States. Washington, D.C.: National Academies Press. ISBN   978-0-309-12540-6.
  2. United States. Clean Water Act of 1977, Pub.L. 95-217, December 27, 1977. Sections 208 (b), (i) and (j), 33 U.S.C.   § 1288.
  3. CWA sec. 304(e), 33 U.S.C.   § 1314(e).
  4. CWA sec. 404(f), 33 U.S.C.   § 1344.
  5. Water Quality Act of 1987, Pub.L. 100-4, February 4, 1987. CWA sec. 319(a),(b),(h),(l), & (m), 33 U.S.C.   § 1329.
  6. Wet Weather Water Quality Act of 2000, December 21, 2000. Added by the Miscellaneous Appropriations Act, 2001 (114 Stat. 2763A–225), as enacted into law by section 1(a)(6) of Pub.L. 106–554 (114 Stat. 2763). Amended CWA sec.121(a)(2), 33 U.S.C.   § 1274.
  7. U.S. Environmental Protection Agency (EPA), Washington, D.C. "EPA Administered Permit Programs: The National Pollutant Discharge Elimination System." Code of Federal Regulations, 40 CFR 122.2 .
  8. EPA. 40 CFR 122.44 .
  9. For example: Best Management Practices and Spill Response: Guidance Document (PDF) (Report). Edmonton, AB: Alberta Environmental Protection. July 1994.
  10. "Ch. 3. Industry-Specific Best Management Practices" (PDF). Guidance Manual for Developing Best Management Practices (BMP) (Report). EPA. October 1993. EPA-833-B-93-004.
  11. National Research Council, Committee on Reducing Stormwater Discharge Contributions to Water Pollution (2009). "3. Hydrologic, Geomorphic, and Biological Effects of Urbanization on Watersheds". Urban Stormwater Management in the United States. Washington, D.C.: National Academies Press. ISBN   978-0-309-12540-6.
  12. Debo, Thomas N.; Reese, Andrew J. (2003). Municipal Stormwater Management (2nd ed.). Boca Raton, FL: CRC Press. ISBN   1-56670-584-3.
  13. Granato, G.E. (2014). "Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)". Scientific Investigations Report (Report). U.S. Geological Survey. doi:10.3133/sir20145037. Scientific Investigations Report 2014–5037.
  14. Granato, G.E.; Spaetzel, A.B.; Medalie, L. (2021). Statistics for simulating structural stormwater runoff best management practices (BMPs) with the Stochastic Empirical Loading and Dilution Model (SELDM) (Report). U.S. Geological Survey. doi:10.3133/sir20205136. Scientific Investigations Report 2020–5136.
  15. Granato, G.E., and Jones, S.C., 2017, Estimating Total Maximum Daily Loads with the Stochastic Empirical Loading and Dilution Model: Transportation Research Record, Journal of the Transportation Research Board, v. 2638, p. 104-112, https://doi.org/10.3141/2638-12
  16. Granato, G.E.; Friesz, P.J. (2021). "Approaches for assessing long-term annual yields of highway and urban runoff in selected areas of California with the Stochastic Empirical Loading and Dilution Model (SELDM)". Scientific Investigations Report (Report). U.S. Geological Survey. doi:10.3133/sir20215043. Scientific Investigations Report 2021–5043.
  17. 1 2 >Granato, G.E.; Spaetzel, A.B.; Jeznach, L.C. (2023). "Approaches for assessing flows, concentrations, and loads of highway and urban runoff and receiving-stream stormwater in southern New England with the Stochastic Empirical Loading and Dilution Model (SELDM)". Scientific Investigations Report (Report). U.S. Geological Survey. doi:10.3133/sir20235087. Scientific Investigations Report 2023–5087.
  18. Granato, G.E., and Jones, S.C., 2017, Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM): in Proceedings of the 2017 World Environmental & Water Resources Congress, Sacramento, CA, May 21–25, 2017, Reston, VA, American Society of Civil Engineers, 15 p. http://ascelibrary.org/doi/abs/10.1061/9780784480601.028
  19. Jeznach, L.C., and Granato, G.E., 2020, Comparison of SELDM simulated total-phosphorus concentrations with ecological impervious-area criteria: Journal of Environmental Engineering: v. 146, No. 8, 10 p. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001763
  20. "National Menu of Best Management Practices (BMPs) for Stormwater". National Pollutant Discharge Elimination System. EPA. 2016.
  21. Swann, Chris (2016). Better Site Design: A Handbook for Changing Development Rules in Your Community (Part 1) (Report). Ellicott City, MD: Center for Watershed Protection. Version 1.0.1.