Fluvial terrace

Last updated

Fluvial terraces are elongated terraces that flank the sides of floodplains and fluvial valleys all over the world. They consist of a relatively level strip of land, called a "tread", separated from either an adjacent floodplain, other fluvial terraces, or uplands by distinctly steeper strips of land called "risers". These terraces lie parallel to and above the river channel and its floodplain. Because of the manner in which they form, fluvial terraces are underlain by fluvial sediments of highly variable thickness. [1] [2] River terraces are the remnants of earlier floodplains that existed at a time when either a stream or river was flowing at a higher elevation before its channel downcut to create a new floodplain at a lower elevation. Changes in elevation can be due to changes in the base level (elevation of the lowest point in the fluvial system, usually the drainage basin) of the fluvial system, which leads to headward erosion along the length of either a stream or river, gradually lowering its elevation. For example, downcutting by a river can lead to increased velocity of a tributary, causing that tributary to erode toward its headwaters. Terraces can also be left behind when the volume of the fluvial flow declines due to changes in climate, typical of areas which were covered by ice during periods of glaciation, and their adjacent drainage basins. [2] [3]

Contents

Types

There are two basic types of fluvial terraces, fill terraces and strath terraces. Fill terraces sometimes are further subdivided into nested fill terraces and cut terraces. Both fill and strath terraces are, at times, described as being either paired or unpaired terraces based upon the relative elevations of the surface of these terraces. [4]

Eroded alluvial fill 60 feet (18 m) thick at Kanab Creek, Kane County, Utah. In 1884 the stream ran at top of the terrace. 1939 photo by United States Geological Survey. Kanab Creek fill terrace 1939.jpg
Eroded alluvial fill 60 feet (18 m) thick at Kanab Creek, Kane County, Utah. In 1884 the stream ran at top of the terrace. 1939 photo by United States Geological Survey.

Fill terraces: Fill terraces are the result of an existing valley being filled with alluvium. The valley may fill with alluvium for many different reasons including: an influx in bed load due to glaciation or change in stream power which causes the valley, that was down cut by either a stream or river, to be filled in with material (Easterbrook). The stream or river will continue to deposit material until an equilibrium is reached and it can transport the material rather than deposit it. This equilibrium may last for a very short period, such as, after glaciation, or for a very long time if the conditions do not change. The fill terrace is created when the conditions change again and either a stream or river starts to incise into the material that it deposited in the valley. [5] Once this occurs benches composed completely of alluvium form on the sides of the valley. The upper most benches are the fill terraces. As it continues to cut down through the alluvium the fill terraces are left above the river channel (sometimes 100 m or more). The fill terrace is only the very highest terrace resulting from the depositional episode; if there are multiple terraces below the fill terrace, these are called "cut terraces". [5]

Hypothetical valley cross-section illustrating a complex sequence of aggradational (fill) and degradational (cut and strath) terraces. Note ct = cut terrace, ft = fill terrace, ft(b) = buried fill terrace, fp = active floodplain, and st = strath terrace. FluvialTerraces2.jpg
Hypothetical valley cross-section illustrating a complex sequence of aggradational (fill) and degradational (cut and strath) terraces. Note ct = cut terrace, ft = fill terrace, ft(b) = buried fill terrace, fp = active floodplain, and st = strath terrace.

Cut terraces: Cut terraces, also called "cut-in-fill" terraces, are similar to the fill terraces mentioned above, but they are erosional in origin. Once the alluvium deposited in the valley has begun to erode and fill terraces form along the valley walls, cut terraces may also form below the fill terraces. As either a stream or river continues to incise into the material, multiple levels of terraces may form. The uppermost being the fill terraces and the remaining lower terraces are cut terraces. [5]

Nested fill terraces: Nested fill terraces are the result of the valley filling with alluvium, the alluvium being incised, and the valley filling again with material but to a lower level than before. The terrace that results for the second filling is a nested terrace because it has been “nested” into the original alluvium and created a terrace. These terraces are depositional in origin and may be able to be identified by a sudden change in alluvium characteristics such as finer material. [5]

Strath terraces: Strath terraces are the result of either a stream or river downcutting through bedrock. As the flow continues to downcut, a period of valley widening may occur and expand the valley width. This may occur due to an equilibrium reached in the fluvial system resulting from: slowed or paused uplift, climate change, or a change in the bedrock type. Once downcutting continues the flattened valley bottom composed of bedrock (overlain with a possible thin layer of alluvium) is left above either a stream or river channel. These bedrock terraces are the strath terraces and are erosional in nature. [6]

Unpaired fluvial terraces on the South Fork of the Shoshone River, Park County, Wyoming, 1923. The river at left has encountered a formation of erosion-resistant volcanic breccia, causing it to downcut more rapidly on the right, leaving terraces of different elevations. Unpaired stream terraces.jpg
Unpaired fluvial terraces on the South Fork of the Shoshone River, Park County, Wyoming, 1923. The river at left has encountered a formation of erosion-resistant volcanic breccia, causing it to downcut more rapidly on the right, leaving terraces of different elevations.

Paired and unpaired terraces: Terraces of the same elevation on opposite sides of either a stream or river are called paired terraces. They occur when it downcuts evenly on both sides and terraces on one side of the river correspond in height with those on the other side. Paired terraces are caused by river rejuvenation. Unpaired terraces occur when either a stream or river encounters material on one side that resists erosion, leaving a single terrace with no corresponding terrace on the resistant side. [3]

Applications

Fluvial terraces can be used to measure the rate at which either a stream or river is downcutting its valley. Using various dating methods, an age can be determined for the deposition of the terrace. Using the resulting date and the elevation above its current level, an approximate average rate of downcutting can be determined. [6]

See also

Related Research Articles

Valley Low area between hills, often with a river running through it

A valley is an elongated low area often running between hills or mountains, which will typically contain a river or stream running from one end to the other. Most valleys are formed by erosion of the land surface by rivers or streams over a very long period of time. Some valleys are formed through erosion by glacial ice. These glaciers may remain present in valleys in high mountain or polar areas. At lower latitudes and altitudes, these glacially formed valleys may have been created or enlarged during ice ages but now are ice-free and occupied by streams or rivers. In desert areas, valleys may be entirely dry or carry a watercourse only rarely. In areas of limestone bedrock, dry valleys may also result from drainage taking place underground rather than at the surface. Rift valleys arise principally from earth movements, rather than erosion. Many different types of valley are described by geographers, using terms that may be global in use or else applied only locally.

Entrenched river

An entrenched river, or entrenched stream is a river or stream that flows in a narrow trench or valley cut into a plain or relatively level upland. Because of lateral erosion streams flowing over gentle slopes over a time develops meandering course. Meanders form where gradient is very gentle, for example in floodplain and delta. Meandering is the feature of the middle and final course of the river. But very deep and wide meanders can also be found cutting hard rocks. Such meanders are called incised or entrenched meanders. The exception is that entrenched meanders are formed during the upliftment of land where river is young. They widen and deepen over time and can be found as deep gorges or canyons in hard rock. In the case of or either an entrenched stream or river, it is often presumed that the watercourse has inherited its course by cutting down into bedrock from a pre-existing plain with little modification of the original course. The down-cutting of the river system could be the result not only of tectonic uplift but also of other factors such as river piracy, decrease of load, increase of runoff, extension of the drainage basin, or change in base level such as a fall in sea level. General, nongeneric terminology for either a river or stream that flows in a narrow trench or valley, for which evidence of a preexisting plain or relatively level upland can be either absent or present is either valley meander or meander valley with the latter term being preferred in literature.

Fluvial processes Processes associated with rivers and streams

In geography and geology, fluvial processes are associated with rivers and streams and the deposits and landforms created by them. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used.

Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.

River rejuvenation Erosion process in geomorphology

In geomorphology a river is said to be rejuvenated when it is eroding the landscape in response to a lowering of its base level. The process is often a result of a sudden fall in sea level or the rise of land. The disturbance enables a rise in the river's potential energy, increasing its riverbed erosion rate. The erosion occurs as a result of the river adjusting to its new base level.

Meander One of a series of curves in a channel of a matured stream

A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse. It is produced as a watercourse erodes the sediments of an outer, concave bank and deposits sediments on an inner, convex bank which is typically a point bar. The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain.

Terrace (geology) A step-like landform

In geology, a terrace is a step-like landform. A terrace consists of a flat or gently sloping geomorphic surface, called a tread, that is typically bounded on one side by a steeper ascending slope, which is called a "riser" or "scarp". The tread and the steeper descending slope together constitute the terrace. Terraces can also consist of a tread bounded on all sides by a descending riser or scarp. A narrow terrace is often called a bench.

Knickpoint

In geomorphology, a knickpoint or nickpoint is part of a river or channel where there is a sharp change in channel slope, such as a waterfall or lake. Knickpoints reflect different conditions and processes on the river, often caused by previous erosion due to glaciation or variance in lithology. In the cycle of erosion model, knickpoints advance one cycle upstream, or inland, replacing an older cycle. A knickpoint that occurs at the head of a channel is called a headcut. Headcuts resulting in headward erosion are hallmarks of unstable expanding drainage features such as actively eroding gullies.

Interlocking spur

An interlocking spur, also known as an overlapping spur, is one of any number of projecting ridges that extend alternately from the opposite sides of the wall of a young, V-shaped valley down which a river with a winding course flows. Each of these spurs extends laterally into a concave bend of the river such that when viewed either upstream or from overhead, the projecting ridges, which are called spurs, appear to "interlock" or "overlap" in a staggered formation like the teeth of a zipper.

Downcutting Process of deepening a stream channel by erosion of the bottom material

Downcutting, also called erosional downcutting, downward erosion or vertical erosion is a geological process by hydraulic action that deepens the channel of a stream or valley by removing material from the stream's bed or the valley's floor. The speed of downcutting depends on the stream's base level, the lowest point to which the stream can erode. Sea level is the ultimate base level, but many streams have a higher "temporary" base level because they empty into another body of water that is above sea level or encounter bedrock that resists erosion. A concurrent process called lateral erosion refers to the widening of a stream channel or valley. When a stream is high above its base level, downcutting will take place faster than lateral erosion; but as the level of the stream approaches its base level, the rate of lateral erosion increases. This is why streams in mountainous areas tend to be narrow and swift, forming V-shaped valleys, while streams in lowland areas tend to be wide and slow-moving, with valleys that are correspondingly wide and flat-bottomed. The term gradient refers to the elevation of a stream relative to its base level. The steeper the gradient, the faster the stream flows. Sometimes geological uplift will increase the gradient of a stream even while the stream downcuts toward its base level, a process called "rejuvenation." This happened in the case of the Colorado River in the western United States, resulting in the process that created the Grand Canyon.

Abrasion (geology)

Abrasion is a process of erosion which occurs when material being transported wears away at a surface over time. It is the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs four ways. Glaciation slowly grinds rocks picked up by ice against rock surfaces. Solid objects transported in river channels make abrasive surface contact with the bed and walls. Objects transported in waves breaking on coastlines cause abrasion. And, finally, abrasion can be caused by wind transporting sand or small stones against surface rocks.

Salmons Brook River in London

Salmons Brook is a minor tributary of the River Lea, located in the London Borough of Enfield.

River Natural flowing watercourse

A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as creek, brook, rivulet, and rill. There are no official definitions for the generic term river as applied to geographic features, although in some countries or communities a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and northeast England, and "beck" in northern England. Sometimes a river is defined as being larger than a creek, but not always: the language is vague.

Bench (geology) Long, relatively narrow land bounded by distinctly steeper slopes above and below

In geomorphology, geography and geology, a bench or benchland is a long, relatively narrow strip of relatively level or gently inclined land that is bounded by distinctly steeper slopes above and below it. Benches can be of different origins and created by very different geomorphic processes.

Alluvial river Type of river

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

In geology, degradation refers to the lowering of a fluvial surface, such as a stream bed or floodplain, through erosional processes. Degradation is the opposite of aggradation. Degradation is characteristic of channel networks in which either bedrock erosion is taking place, or in systems that are sediment-starved and are therefore entraining more material than they are depositing. When a stream degrades, it leaves behind a fluvial terrace. This can be further classified as a strath terrace—a bedrock terrace that may have a thin mantle of alluvium—if the river is incising through bedrock. These terraces may be dated with methods such as cosmogenic radionuclide dating, OSL dating, and paleomagnetic dating to find when a river was at a particular level and how quickly it is downcutting.

Channel patterns are found in rivers, streams, and other bodies of water that transport water from one place to another. Systems of branching river channels dissect most of the sub-aerial landscape, each in a valley proportioned to its size. Whether formed by chance or necessity, by headward erosion or downslope convergence, whether inherited or newly formed. Depending on different geological factors such as weathering, erosion, depositional environment, and sediment type, different types of channel patterns can form.

Slip-off slope Depositional landform on the inside convex bank of a meandering river

A slip-off slope is a depositional landform that occurs on the inside convex bank of a meandering river. The term can refer to two different features: one in a freely meandering river with a floodplain and the other in an entrenched river.

Legacy sediment (LS) is depositional bodies of sediment inherited from the increase of human activities since the Neolithic. These include a broad range of land use and land cover changes, such as agricultural clearance, lumbering and clearance of native vegetation, mining, road building, urbanization, as well as alterations brought to river systems in the form of dams and other engineering structures meant to control and regulate natural fluvial processes. The concept of LS is used in geomorphology, ecology, as well as in water quality and toxicological studies.

Glaciofluvial deposits Sediments/deposits formed from ice sheets or glaciers

Glaciofluvial deposits or Glacio-fluvial sediments consist of boulders, gravel, sand, silt and clay from ice sheets or glaciers. They are transported, sorted and deposited by streams of water. The deposits are formed beside, below or downstream from the ice. They include kames, kame terraces and eskers formed in ice contact and outwash fans and outwash plains below the ice margin. Typically the outwash sediment is carried by fast and turbulent fluvio-glacial meltwater streams, but occasionally it is carried by catastrophic outburst floods. Larger elements such as boulders and gravel are deposited nearer to the ice margin, while finer elements are carried farther, sometimes into lakes or the ocean. The sediments are sorted by fluvial processes. They differ from glacial till, which is moved and deposited by the ice of the glacier, and is unsorted.

References

  1. Fairbridge, R. W., 1968, Encyclopedia of Geomorphology. Reinhold Book Company, New York.
  2. 1 2 Blum, M., and T.E. Tonqvist, 2000, Fluvial responses to climate and sea-level change, a review and look forward. Sedimentology. v. 47 suppl. 1, pp. 2-48.
  3. 1 2 Leet, L.D., S. Judson, and M.E. Kauffman, 1982, Physical Geology, 6th Edition. Englewood Cliffs, NJ: Prentice-Hall. ISBN   0-13-669762-3
  4. Pazzaglia, Frank J., in press, 9.2.3 Fluvial Terraces, Archived 2010-08-01 at the Wayback Machine in Wohl, E., ed., Treatise of Geomorphology. New York, NY: Elsevier.
  5. 1 2 3 4 Easterbrook, Don J., 1999, Surface Processes and Landforms, 2nd Edition. Upper Saddle River, NJ: Prentice Hall. ISBN   0-13-860958-6
  6. 1 2 Burbank, D.W., and R.S. Anderson, Robert, 2001, Tectonic Geomorphology, Malden, MA: Blackwell Publishing ISBN   0-632-04386-5