Stream power

Last updated
Stream power
Water flowing in creek looped.gif
Water flowing in creek
Common symbols
Ω, ω
SI unit Watts
In SI base units kg m2 s−3
Derivations from
other quantities
Ω=ρgQS
Dimension M L2 T−3

Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that water. There are many forms of the stream power formula with varying utilities, such as comparing rivers of various widths or quantifying the energy required to move sediment of a certain size. Stream power is closely related to other criteria such as stream competency and shear stress. Stream power is a valuable measurement for hydrologists and geomorphologists tackling sediment transport issues as well as for civil engineers, who use it in the planning and construction of roads, bridges, dams, and culverts.

Contents

History

Although many authors had suggested the use of power formulas in sediment transport in the decades preceding Bagnold's work, [2] [3] and in fact Bagnold himself suggested it a decade before putting it into practice in one of his other works, [4] it wasn't until 1966 that R. A. Bagnold tested this theory experimentally to validate whether it would indeed work or not. [1] This was successful and since then, many variations and applications of stream power have surfaced. The lack of fixed guidelines on how to define stream power in this early stage lead to many authors publishing work under the name "stream power" while not always measuring the entity in the same way; this led to partially failed efforts to establish naming conventions for the various forms of the formula by Rhoads two decades later in 1986. [5] [6] Today stream power is still used and new ways of applying it are still being discovered and researched, with a large integration into modern numerical models utilizing computer simulations. [5] [7] [8] [9]

Derivation

It can be derived by the fact that if the water is not accelerating and the river cross-section stays constant (generally good assumptions for an averaged reach of a stream over a modest distance), all of the potential energy lost as the water flows downstream must be used up in friction or work against the bed: none can be added to kinetic energy. Therefore, the potential energy drop is equal to the work done to the bed and banks, which is the stream power.

We know that change in potential energy over change in time is given by the equation:

where water mass and gravitational acceleration are constant. We can use the channel slope and the stream velocity as a stand-in for : the water will lose elevation at a rate given by the downward component of velocity . For a channel slope (as measured from the horizontal) of :

where is the downstream flow velocity. It is noted that for small angles, . Rewriting the first equation, we now have:

Remembering that power is energy per time and using the equivalence between work against the bed and loss in potential energy, we can write:

Finally, we know that mass is equal to density times volume. From this, we can rewrite the mass on the right hand side

where is the channel length, is the channel width (breadth), and is the channel depth (height). We use the definition of discharge

where is the cross-sectional area, which can often be reasonably approximated as a rectangle with the characteristic width and depth. This absorbs velocity, width, and depth. We define stream power per unit channel length, so that term goes to 1, and the derivation is complete.

Various Forms

(Total) Stream power

Stream power is the rate of energy dissipation against the bed and banks of a river or stream per unit downstream length. It is given by the equation:

where Ω is the stream power, ρ is the density of water (1000 kg/m3), g is acceleration due to gravity (9.8 m/s2), Q is discharge (m3/s), and S is the channel slope. [5]

Total Stream Power

Total stream power often refers simply to stream power, but some authors use it as the rate of energy dissipation against the bed and banks of a river or stream per entire stream length. It is given by the equation:

where Ω is the stream power, per unit downstream length and L is the length of the stream. [7] [5]

Unit (or Specific) Stream power

Unit stream power is stream power per unit channel width, and is given by the equation:

where ω is the unit stream power, and b is the width of the channel. Normalizing the stream power by the width of the river allows for a better comparison between rivers of various widths. [5] This also provides a better estimation of the sediment carrying capacity of the river as wide rivers with high stream power are exerting less force per surface area than a narrow river with the same stream power, as they are losing the same amount of energy but in the narrow river it is concentrated into a smaller area.

Critical Unit Stream Power

Critical unit stream power is the amount of stream power needed to displace a grain of a specific size, it is given by the equation:

where τ0 is the critical shear stress of the grain size that will be moved which can be found in the literature or experimentally determined while v0 is the critical mobilization speed. [10] [11]

Relationships to other variables

Size of displaced sediment

Critical stream power can be used to determine the stream competency of a river, which is a measure to determine the largest grain size that will be moved by a river. In rivers with large sediment sizes the relationship between critical unit stream power and sediment diameter displaced can be reduced to: [12] [13]

While in intermediate-sized rivers the relationship was found to follow: [12]

Shear stress

Shear stress is another variable used in erosion and sediment transport models representing the force applied on a surface by a perpendicular force, and can be calculated using the following formula

Where τ is the shear stress, S is the slope of the water, ρ is the density of water (1000 kg/m3), g is acceleration due to gravity (9.8 m/s2). [14] Shear stress can be used to compute the unit stream power using the formula

Where V is the velocity of the water in the stream. [14]

Applications

Landscape evolution

An example of a map displaying a stream power index (SPI) alongside an index displaying how wet the ground is (TWI) Topographic wetness & stream power index.jpg
An example of a map displaying a stream power index (SPI) alongside an index displaying how wet the ground is (TWI)

Stream power is used extensively in models of landscape evolution and river incision. Unit stream power is often used for this, because simple models use and evolve a 1-dimensional downstream profile of the river channel. It is also used with relation to river channel migration, and in some cases is applied to sediment transport. [1]

Predicting flood plain formation

By plotting stream power along the length of a river course as a second-order exponential curve, you are able to identify areas where flood plains may form and why they will form there. [15]

Sensitivity to erosion

Stream power has also been used as a criterion to determine whether a river is in a state of reshaping itself or whether it is stable. A value of unit stream power between 30 and 35 W m−2 in which this transition occurs has been found by multiple studies. [7] [16] [17] Another technique gaining popularity is using a gradient of stream power by comparing the unit stream power upstream to the local unit stream power () to identify patterns such as sudden jumps or drops in stream power, these features can help identify locations where the local terrain controls the flow or widens out as well as areas prone to erosion. [7] [8]

Bridge and culvert design

Stream power can be used as an indicator of potential damages to bridges as a result of large rain events and how strong bridges should be designed in order to avoid damage during these events. [9] Stream power can also be used to guide culvert and bridge design in order to maintain healthy stream morphology in which fish are able to continuing traversing the water course and no erosion processes are initiated. [18]

See also

Related Research Articles

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953). It is the dimensionless number that expresses the ratio of the buoyancy term to the flow shear term:

Acoustic impedance and specific acoustic impedance are measures of the opposition that a system presents to the acoustic flow resulting from an acoustic pressure applied to the system. The SI unit of acoustic impedance is the pascal-second per cubic metre, or in the MKS system the rayl per square metre (Rayl/m2), while that of specific acoustic impedance is the pascal-second per metre (Pa·s/m), or in the MKS system the rayl (Rayl). There is a close analogy with electrical impedance, which measures the opposition that a system presents to the electric current resulting from a voltage applied to the system.

<span class="mw-page-title-main">Quartz crystal microbalance</span>

A quartz crystal microbalance (QCM) measures a mass variation per unit area by measuring the change in frequency of a quartz crystal resonator. The resonance is disturbed by the addition or removal of a small mass due to oxide growth/decay or film deposition at the surface of the acoustic resonator. The QCM can be used under vacuum, in gas phase and more recently in liquid environments. It is useful for monitoring the rate of deposition in thin-film deposition systems under vacuum. In liquid, it is highly effective at determining the affinity of molecules to surfaces functionalized with recognition sites. Larger entities such as viruses or polymers are investigated as well. QCM has also been used to investigate interactions between biomolecules. Frequency measurements are easily made to high precision ; hence, it is easy to measure mass densities down to a level of below 1 μg/cm2. In addition to measuring the frequency, the dissipation factor is often measured to help analysis. The dissipation factor is the inverse quality factor of the resonance, Q−1 = w/fr ; it quantifies the damping in the system and is related to the sample's viscoelastic properties.

<span class="mw-page-title-main">Open-channel flow</span> Type of liquid flow within a conduit

In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not hydraulic pressure.

<span class="mw-page-title-main">Sediment transport</span> Movement of solid particles, typically by gravity and fluid entrainment

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

In astrophysics, the virial mass is the mass of a gravitationally bound astrophysical system, assuming the virial theorem applies. In the context of galaxy formation and dark matter halos, the virial mass is defined as the mass enclosed within the virial radius of a gravitationally bound system, a radius within which the system obeys the virial theorem. The virial radius is determined using a "top-hat" model. A spherical "top hat" density perturbation destined to become a galaxy begins to expand, but the expansion is halted and reversed due to the mass collapsing under gravity until the sphere reaches equilibrium – it is said to be virialized. Within this radius, the sphere obeys the virial theorem which says that the average kinetic energy is equal to minus one half times the average potential energy, , and this radius defines the virial radius.

<span class="mw-page-title-main">Stream competency</span> Concept in hydrology

In hydrology stream competency, also known as stream competence, is a measure of the maximum size of particles a stream can transport. The particles are made up of grain sizes ranging from large to small and include boulders, rocks, pebbles, sand, silt, and clay. These particles make up the bed load of the stream. Stream competence was originally simplified by the “sixth-power-law,” which states the mass of a particle that can be moved is proportional to the velocity of the river raised to the sixth power. This refers to the stream bed velocity which is difficult to measure or estimate due to the many factors that cause slight variances in stream velocities.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

Erodability is the inherent yielding or nonresistance of soils and rocks to erosion. A high erodability implies that the same amount of work exerted by the erosion processes leads to a larger removal of material. Because the mechanics behind erosion depend upon the competence and coherence of the material, erodability is treated in different ways depending on the type of surface that eroded.

In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
Both mechanisms are applied to gravity-capillary waves and have in common that waves are generated by a resonance phenomenon. The Miles mechanism is based on the hypothesis that waves arise as an instability of the sea-atmosphere system. The Phillips mechanism assumes that turbulent eddies in the atmospheric boundary layer induce pressure fluctuations at the sea surface. The Phillips mechanism is generally assumed to be important in the first stages of wave growth, whereas the Miles mechanism is important in later stages where the wave growth becomes exponential in time.

The recharge oscillator model for El Niño–Southern Oscillation (ENSO) is a theory described for the first time in 1997 by Jin., which explains the periodical variation of the sea surface temperature (SST) and thermocline depth that occurs in the central equatorial Pacific Ocean. The physical mechanisms at the basis of this oscillation are periodical recharges and discharges of the zonal mean equatorial heat content, due to ocean-atmosphere interaction. Other theories have been proposed to model ENSO, such as the delayed oscillator, the western Pacific oscillator and the advective reflective oscillator. A unified and consistent model has been proposed by Wang in 2001, in which the recharge oscillator model is included as a particular case.

References

  1. 1 2 3 Bagnold, Ralph A. (1966). "An approach to the sediment transport problem from general physics". Professional Paper. doi: 10.3133/pp422i . hdl: 2027/uc1.31210020748099 . ISSN   2330-7102.
  2. Rubey, W. W. (1933). "Equilibrium-conditions in debris-laden streams". Transactions, American Geophysical Union. 14 (1): 497. doi:10.1029/tr014i001p00497. ISSN   0002-8606.
  3. Knapp, Robert T. (1938). "Energy-balance in stream-flows carrying suspended load". Transactions, American Geophysical Union. 19 (1): 501. doi:10.1029/tr019i001p00501. ISSN   0002-8606.
  4. Bagnold, Ralph A. (1956-12-18). "The flow of cohesionless grains in fluids". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 249 (964): 235–297. doi:10.1098/rsta.1956.0020. ISSN   0080-4614. S2CID   124012787.
  5. 1 2 3 4 5 Gartner, John (2016-01-01). "Stream Power: Origins, Geomorphic Applications, and GIS Procedures". Water Publications.
  6. Rhoads, Bruce L. (May 1987). "Stream Power Terminology". The Professional Geographer. 39 (2): 189–195. doi:10.1111/j.0033-0124.1987.00189.x. ISSN   0033-0124.
  7. 1 2 3 4 Bizzi, S.; Lerner, D. N. (January 2015). "The Use of Stream Power as an Indicator of Channel Sensitivity to Erosion and Deposition Processes: SP AS AN INDICATOR OF EROSION AND DEPOSITION". River Research and Applications. 31 (1): 16–27. doi:10.1002/rra.2717. S2CID   129164405.
  8. 1 2 Gartner, John D.; Dade, William B.; Renshaw, Carl E.; Magilligan, Francis J.; Buraas, Eirik M. (November 2015). "Gradients in stream power influence lateral and downstream sediment flux in floods". Geology. 43 (11): 983–986. doi:10.1130/G36969.1. ISSN   0091-7613.
  9. 1 2 Anderson, Ian; Rizzo, Donna M.; Huston, Dryver R.; Dewoolkar, Mandar M. (May 2017). "Stream Power Application for Bridge-Damage Probability Mapping Based on Empirical Evidence from Tropical Storm Irene". Journal of Bridge Engineering. 22 (5): 05017001. doi:10.1061/(ASCE)BE.1943-5592.0001022. ISSN   1084-0702.
  10. Wilcock, Peter R. (April 1993). "Critical Shear Stress of Natural Sediments". Journal of Hydraulic Engineering. 119 (4): 491–505. doi:10.1061/(asce)0733-9429(1993)119:4(491). ISSN   0733-9429.
  11. Petit, F.; Gob, F.; Houbrechts, G.; Assani, A. A. (2005-07-01). "Critical specific stream power in gravel-bed rivers". Geomorphology. 69 (1): 92–101. doi:10.1016/j.geomorph.2004.12.004. ISSN   0169-555X.
  12. 1 2 Petit, F.; Gob, F.; Houbrechts, G.; Assani, A. A. (2005-07-01). "Critical specific stream power in gravel-bed rivers". Geomorphology. 69 (1): 92–101. doi:10.1016/j.geomorph.2004.12.004. ISSN   0169-555X.
  13. COSTA, JOHN E. (1983-08-01). "Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range". GSA Bulletin. 94 (8): 986–1004. doi:10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2. ISSN   0016-7606.
  14. 1 2 Gartner, John (2016-01-01). "Stream Power: Origins, Geomorphic Applications, and GIS Procedures". Water Publications.
  15. Jain, V.; Fryirs, K.; Brierley, G. (2008-01-01). "Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes". Geological Society of America Bulletin. 120 (1–2): 127–141. doi:10.1130/B26092.1. ISSN   0016-7606.
  16. Orr, H.G.; Large, A.R.G.; Newson, M.D.; Walsh, C.L. (August 2008). "A predictive typology for characterising hydromorphology". Geomorphology. 100 (1–2): 32–40. doi:10.1016/j.geomorph.2007.10.022.
  17. Brookes, Andrew (1987). "The distribution and management of channelized streams in Denmark". Regulated Rivers: Research & Management. 1 (1): 3–16. doi:10.1002/rrr.3450010103. ISSN   1099-1646.
  18. Kosicki, Andrzej J.; Davis, Stanley R. (January 2001). "Consideration of Stream Morphology in Culvert and Bridge Design". Transportation Research Record: Journal of the Transportation Research Board. 1743 (1): 57–59. doi:10.3141/1743-08. ISSN   0361-1981. S2CID   109792586.