Check dam

Last updated
Concrete check dams in Austria Viehofen verbauung.jpg
Concrete check dams in Austria
A steel check dam Slit check dam-2.jpg
A steel check dam
A common application of check dams is in bioswales, which are artificial drainage channels that are designed to remove silt and pollution from runoff. Bioswale.jpg
A common application of check dams is in bioswales, which are artificial drainage channels that are designed to remove silt and pollution from runoff.

A check dam is a small, sometimes temporary, dam constructed across a swale, drainage ditch, or waterway to counteract erosion by reducing water flow velocity. [1] Check dams themselves are not a type of new technology; rather, they are an ancient technique dating from the second century AD. [2] Check dams are typically, though not always, implemented in a system of several dams situated at regular intervals across the area of interest. [3]

Contents

A check dam across the Kudumbur River, in Kerala, India Check dam Thadayana.jpg
A check dam across the Kudumbur River, in Kerala, India

Function

A check dam placed in the ditch, swale, or channel interrupts the flow of water and flattens the gradient of the channel, thereby reducing the velocity. In turn, this obstruction induces infiltration and reduces eroding. [1] They can be used not only to slow flow velocity but also to distribute flows across a swale to avoid preferential paths and guide flows toward vegetation. [4] Although some sedimentation may result behind the dam, check dams do not primarily function as sediment-trapping devices. [5]

For instance, on the Graliwdo River in Ethiopia, an increase of hydraulic roughness by check dams and water transmission losses in deposited sediments is responsible for the delay of runoff to reach the lower part of the river channels. The reduction of peak runoff discharge was larger in the river segment with check dams and vegetation (minus 12%) than in segment without treatment (minus 5.5%). Reduction of total runoff volume was also larger in the river with check dams than in the untreated river. The implementation of check dams combined with vegetation reduced peak flow discharge and total runoff volume as large parts of runoff infiltrated in the sediments deposited behind the check dams. As gully check dams are implemented in a large areas of northern Ethiopia, this contributes to groundwater recharge and increased river base flow. [6]

Applications

Grade control mechanism

Check dams have traditionally been implemented in two environments: across channel bottoms and on hilly slopes. [7] Check dams are used primarily to control water velocity, conserve soil, and improve land. [8] They are used when other flow-control practices, such as lining the channel or creating bioswales, are impractical. [9] Accordingly, they are commonly used in degrading temporary channels, in which permanent stabilization is impractical and infeasible in terms of resource allocation and funding due to the short life period. They are also used when construction delays and weather conditions prevent timely installation of other erosion control practices. [10] This is typically seen during the construction process of large-scale permanent dams or erosion control. As such, check dams serve as temporary grade-control mechanisms along waterways until resolute stabilization is established or along permanent swales that need protection prior to installation of a non-erodible lining. [11]

Water quality control mechanism

Many check dams tend to form stream pools. Under low-flow circumstances, water either infiltrates into the ground, evaporates, or seeps through or under the dam. Under high flow – flood – conditions, water flows over or through the structure. Coarse and medium-grained sediment from runoff tends to be deposited behind check dams, while finer grains flow through. Floating garbage is also trapped by check dams, increasing their effectiveness as water quality control measures.

Arid regions

Boulder-faced log dam in Maygwa, Ethiopia Log Dam May Qoqah.jpg
Boulder-faced log dam in Maygwa, Ethiopia

In arid areas, check dams are often built to increase groundwater recharge in a process called managed aquifer recharge. Winter runoff thus can be stored in aquifers, from which the water can be withdrawn during the dry season for irrigation, livestock watering, and drinking water. This is particularly useful for small settlements located far from a large urban center as check dams require less reliance on machinery, funding, or advanced knowledge compared to large-scale dam implementation. [12] [2]

Check dams can be used in combination with limans to stop and collect surface runoff water.

Mountainous regions

As a strategy to stabilize mountain streams, the construction of check dams has a long tradition in many mountainous regions dating back to the 19th century in Europe. Steep slopes impede access by heavy construction machinery to mountain streams, so check dams have been built in place of larger dams. Because the typical high slope causes high flow velocity, a terraced system of multiple closely spaced check dams is typically necessary to reduce velocity and thereby counteract erosion. Such consolidation check dams, built in terraces, attempt to prevent both headward and downward cutting into channel beds while also stabilizing adjacent hill slopes. They are further used to mitigate flood and debris flow hazards. [13]

Temporary Test Dams TTDs

In the UK planning laws, applications and restrictions delay flood mitigation work. This can be counteracted by setting up Temporary Test Dams in watercourses that can then be monitored and valued. This does however require the landowners support. TTDs have proven to be a great way to get rapid action following a flood event and a way to get communities involved in the defence against future flood events.

Design considerations

Site

Before installing a check dam, engineers inspect the site. Standard practices call for the drainage area to be ten acres or less. [3] [9] The waterway should be on a slope of no more than 50% and should have a minimum depth to bedrock of 2 ft (0.61 m). [14] Check dams are often used in natural or constructed channels or swales. They should never be placed in live streams unless approved by appropriate local, state and/or federal authorities. [14]

Materials

Log dam in a gully, circa 1935, Missouri, US Log dam in a gully - NARA - 286165.tif
Log dam in a gully, circa 1935, Missouri, US
Log dam in Adawro river, Ethiopia Log dam in Adawro river.jpg
Log dam in Adawro river, Ethiopia

Check dams are made of a variety of materials. Because they are typically used as temporary structures, they are often made of cheap and accessible materials such as rocks, gravel, logs, hay bales, and sandbags. [9] [15] Of these, logs and rock check dams are usually permanent or semi-permanent, and sandbag check dams are built primarily for temporary purposes. Also, there are check dams that are constructed with rockfill or wooden boards. These dams are usually implemented only in small, open channels that drain 10 acres (0.04 km2) or less; and usually do not exceed 2 ft (0.61 m) high. [16] Woven wire can be used to construct check dams in order to hold fine material in a gully. It is typically used in environments where the gully has a moderate slope (less than 10%), small drainage area, and in regions where flood flows do not typically carry large rocks or boulders. [17] [15] In nearly all instances, erosion control blankets, which are biodegradable open-weave blankets, are used in conjunction with check dams. These blankets help encourage vegetation growth on the slopes, shorelines and ditch bottoms.

Log dam building in Adawro Log dam building in Adawro.jpg
Log dam building in Adawro

Size

Check dams are usually less than 2 to 3 feet (0.61 to 0.91 m) high. [18] and the center of the dam should be at least 6 in (0.15 m) lower than its edges. [9] This criterion induces a weir effect, resulting in increased water surface level upstream for some, if not all flow conditions. [19]

Spacing

In order to effectively slow water velocity to reduce erosion and to protect the channel between dams in a larger system, spacing must be designed properly. Check dams should be spaced such that the toe of the upstream check dam is equal to the elevation of the downstream check dam's crest. [20] This allows water to pond between dams and substantially slows the flow's velocity. [5]

Advantages

Check dams are a highly effective practice to reduce flow velocities in channels and waterways. In contrast to big dams, check dams are implemented faster, are cost effective, and are smaller in scope. Because of this, their implementation does not typically displace people and communities nor do they destroy natural resources if designed correctly. [21] Moreover, the dams are simple to construct and do not rely on advanced technologies, allowing their use in rural communities with fewer resources or access to technical expertise, as they have been in India's drylands for some time now. [21]

Limitations

Check dams still require maintenance and sediment removal practices. They become more difficult to implement on steep slopes, as velocity is higher and the distance between dams must be shortened. [5] Check dams, depending on the material used, can have a limited life span but if implemented correctly can be considered permanent. [5]

Maintenance

Check dams require regular maintenance as typically temporary structures not designed to withstand long-term use. Dams should be inspected every week and after heavy rainfall. [5] It is important that rubble, litter, and leaves are removed from the upstream side of the dam. [9] This is typically done when the sediment has reached a height of one-half the original height of the dam. [9]

When the site is permanently stabilized and the check dam is no longer needed, it is fully removed, including components washed downstream, and bare spots are stabilized. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Storm drain</span> Infrastructure for draining excess rain and ground water from impervious surfaces

A storm drain, storm sewer, highway drain, surface water drain/sewer, or stormwater drain is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.

<span class="mw-page-title-main">Gully</span> Landform created by running water and/or mass movement eroding sharply into soil

A gully is a landform created by running water, mass movement, or commonly a combination of both eroding sharply into soil or other relatively erodible material, typically on a hillside or in river floodplains or terraces.

<span class="mw-page-title-main">Retention basin</span> Artificial pond for stormwater runoff

A retention basin, sometimes called a retention pond,wet detention basin, or storm water management pond (SWMP), is an artificial pond with vegetation around the perimeter and a permanent pool of water in its design. It is used to manage stormwater runoff, for protection against flooding, for erosion control, and to serve as an artificial wetland and improve the water quality in adjacent bodies of water.

<span class="mw-page-title-main">Geotextile</span> Textile material used in ground stabilization and construction

Geotextiles are versatile permeable fabrics that, when used in conjunction with soil, can effectively perform multiple functions, including separation, filtration, reinforcement, protection, and drainage. Typically crafted from polypropylene or polyester, geotextile fabrics are available in two primary forms: woven, which resembles traditional mail bag sacking, and nonwoven, which resembles felt.

<span class="mw-page-title-main">Bioswale</span> Landscape elements designed to manage surface runoff water

Bioswales are channels designed to concentrate and convey stormwater runoff while removing debris and pollution. Bioswales can also be beneficial in recharging groundwater.

<span class="mw-page-title-main">Rain garden</span> Runoff reducing landscaping method

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

<span class="mw-page-title-main">First flush</span> Initial surface runoff of a rainstorm

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.

<span class="mw-page-title-main">Erosion control</span> Practice of preventing soil erosion in agriculture and land development

Erosion control is the practice of preventing or controlling wind or water erosion in agriculture, land development, coastal areas, river banks and construction. Effective erosion controls handle surface runoff and are important techniques in preventing water pollution, soil loss, wildlife habitat loss and human property loss.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">Sustainable drainage system</span> Designed to reduce the potential impact of development

Sustainable drainage systems are a collection of water management practices that aim to align modern drainage systems with natural water processes and are part of a larger green infrastructure strategy. SuDS efforts make urban drainage systems more compatible with components of the natural water cycle such as storm surge overflows, soil percolation, and bio-filtration. These efforts hope to mitigate the effect human development has had or may have on the natural water cycle, particularly surface runoff and water pollution trends.

<span class="mw-page-title-main">Buffer strip</span>

A buffer strip is an area of land maintained in permanent vegetation that helps to control air quality, soil quality, and water quality, along with other environmental problems, dealing primarily on land that is used in agriculture. Buffer strips trap sediment, and enhance filtration of nutrients and pesticides by slowing down surface runoff that could enter the local surface waters. The root systems of the planted vegetation in these buffers hold soil particles together which alleviate the soil of wind erosion and stabilize stream banks providing protection against substantial erosion and landslides. Farmers can also use buffer strips to square up existing crop fields to provide safety for equipment while also farming more efficiently.

<span class="mw-page-title-main">Drop structure</span> Structure that lowers elevation of water in a controlled fashion

A drop structure, also known as a grade control, sill, or weir, is a manmade structure, typically small and built on minor streams, or as part of a dam's spillway, to pass water to a lower elevation while controlling the energy and velocity of the water as it passes over. Unlike most dams, drop structures are usually not built for water impoundment, diversion, or raising the water level. Mostly built on watercourses with steep gradients, they serve other purposes such as water oxygenation and erosion prevention.

<span class="mw-page-title-main">Percolation trench</span> Drainage structure

A percolation trench, also called an infiltration trench, is a type of best management practice (BMP) that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. It is a shallow excavated trench filled with gravel or crushed stone that is designed to infiltrate stormwater though permeable soils into the groundwater aquifer.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

<span class="mw-page-title-main">Sediment basin</span>

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil that is washed off during rain storms, and protect the water quality of a nearby stream, river, lake, or bay. The sediment-laden soil settles in the pond before the runoff is discharged. Sediment basins are typically used on construction sites of 5 acres (20,000 m2) or more, where there is sufficient room. They are often used in conjunction with erosion controls and other sediment control practices. On smaller construction sites, where a basin is not practical, sediment traps may be used.

<span class="mw-page-title-main">Fiber roll</span> Temporary erosion control

A fiber roll is a temporary erosion control and sediment control device used on construction sites to protect water quality in nearby streams, rivers, lakes and seas from sediment erosion. It is made of straw, coconut fiber or similar material formed into a tubular roll.

<span class="mw-page-title-main">Level spreader</span>

A level spreader is an erosion control device designed to reduce water pollution by mitigating the impact of high-velocity stormwater surface runoff. It is used both on construction sites and for permanent applications such as drainage for roads and highways. The device reduces the energy level in high-velocity flow by converting it into sheet flow, and disperses the discharged water so that it may be infiltrated into soil.

<span class="mw-page-title-main">Water-sensitive urban design</span> Integrated approach to urban water cycle

Water-sensitive urban design (WSUD) is a land planning and engineering design approach which integrates the urban water cycle, including stormwater, groundwater, and wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal. WSUD is a term used in the Middle East and Australia and is similar to low-impact development (LID), a term used in the United States; and Sustainable Drainage System (SuDS), a term used in the United Kingdom.

<span class="mw-page-title-main">May Be'ati River</span> River in the Tembien highlands of Ethiopia

The May Be’ati is a river of the Nile basin. Rising in the mountains of Dogu’a Tembien in northern Ethiopia, it flows southward to empty finally in the Giba and Tekezé River.

References

  1. 1 2 Marsh, William M. (2010). Landscape Planning: Environmental Applications (5th ed.). Danvers, MA: John Wiley & Sons, Inc. pp. 267–268. ISBN   978-0-470-57081-4.
  2. 1 2 Agoramoorthy, Govindasamy, Sunita Chaudhary & Minna J. Hsu (2008). "The Check-Dam Route to Mitigate India's Water Shortages". Natural Resources Journal. 48 (3): 565–583.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 Mississippi Department of Environmental Quality. Erosion Stormwater Manual (PDF) (4th ed.). Mississippi DEQ. pp. 4–118. Archived (PDF) from the original on March 5, 2016. Retrieved October 21, 2014.
  4. Melbourne Water (2005). Water Sensitive Urban Design Engineering Procedures: Stormwater. Australia: CSIRO Publishing. p. 140. ISBN   978-0-643-09092-7 . Retrieved 28 October 2014.
  5. 1 2 3 4 5 6 Iowa Statewide Urban Design and Specifications (SUDAS) (2013). Design Manual - Erosion and Sediment Control (PDF). Ames, IA: Institute for Transportation at Iowa State University. Archived from the original (PDF) on 9 November 2014. Retrieved 28 October 2014.
  6. Etefa Guyassa, and colleagues (2017). "Effects of check dams on runoff characteristics along gully reaches, the case of Northern Ethiopia". Journal of Hydrology. 545: 299–309. Bibcode:2017JHyd..545..299G. doi:10.1016/j.jhydrol.2016.12.019. hdl: 1854/LU-8518957 . Archived from the original on 2021-05-07. Retrieved 2020-08-31.
  7. Garcia, Carmelo & Mario Lenzi (2010). Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams. New York: Nova Science Publishers. ISBN   978-1-61761-749-2.
  8. A conceptual model of check dam hydraulics for gully control:efficiency, optimal spacing and relation with step-pools C. Castillo, R. Pérez, and J. A. Gómez from Hydrology and Earth System Sciences 18, 1705–1721, 2014
  9. 1 2 3 4 5 6 United States Environmental Protection Agency (2014-08-06). "Water Best Management Practices: Check Dams". water.epa.gov. USEPA. Archived from the original on 2015-09-01. Retrieved 28 October 2014.
  10. North Carolina Department of Environment and Natural Resources (2006). Practice Standards and Specifications. Raleigh, N.C.: NCDENR. pp. 6.83.1–6.83.3. Archived from the original on 2013-07-24. Retrieved 28 October 2014.
  11. Urban Drainage and Flood Control District (2010). Urban Storm Drainage Criteria Manual Volume 3 (PDF). Colorado: Urban Drainage and Flood Control District. Archived from the original (PDF) on 2012-09-05. Retrieved 28 October 2014.
  12. S. Parimala Renganayaki, L. Elango (April 2013). "A review on managed aquifer recharge by check dams: a case study near Chennai, India". : International Journal of Research in Engineering and Technology 2 (4): 416–423
  13. Mazzorana, Bruno (6 June 2014). "The susceptibility of consolidation check dams as a key factor for maintenance planning". Österreichische Wasser- und Abfallwirtschaft. 66 (5): 214–216. Bibcode:2014OWasA..66..214M. doi:10.1007/s00506-014-0160-4. S2CID   130712151.
  14. 1 2 Department of Environmental Quality (2005). IDEQ Stormwater Best Management Practices Catalog: Check Dams BMP 32 (PDF). State of Idaho. pp. 106–108. Archived from the original (PDF) on 22 December 2016. Retrieved 28 October 2014.
  15. 1 2 Nyssen, J. and colleagues (2017). "Boulder-Faced Log Dams as an Alternative for Gabion Check Dams in First-Order Ephemeral Streams with Coarse Bed Load in Ethiopia". Journal of Hydraulic Engineering. 143. doi:10.1061/(ASCE)HY.1943-7900.0001217.
  16. USDA Natural Resource Conservation Services (NRCS). "Urban BMPs: Water Erosion" (PDF). usda.gov. USDA. Retrieved 28 October 2014.[ permanent dead link ]
  17. "FAO Watershed Management Field Manual". fao.org. Food and Agricultural Organizations of the United Nations. Archived from the original on 31 January 2019. Retrieved 28 October 2014.
  18. Urban BMPs: Water, erosion, check dams (PDF). United States Department of Agriculture. Retrieved 4 November 2014.[ permanent dead link ]
  19. Rickard, Charles & Rodney Day, Jeremy Purseglove (2003). River Weirs – Good Practice Guide (PDF). UK: Environment Agency. p. xi. Archived (PDF) from the original on 23 January 2017. Retrieved 4 November 2014.{{cite book}}: CS1 maint: multiple names: authors list (link)
  20. Sustainable Technologies Evaluation Program. "Check dams". Low Impact Development Stormwater Management Planning and Design Guide. Archived from the original on 8 December 2019. Retrieved 28 March 2018.
  21. 1 2 Agoramoorthy, Govindasamy, and Minna J. Hsu (2008). "Small Size, Big Potential: Check Dams for Sustainable Development". Environment. 50 (4): 22–34. Bibcode:2008ESPSD..50d..22A. doi:10.3200/envt.50.4.22-35. S2CID   153334085. ProQuest   224015181.{{cite journal}}: CS1 maint: multiple names: authors list (link)