Return period

Last updated

A return period, also known as a recurrence interval or repeat interval, is an average time or an estimated average time between events such as earthquakes, floods, [1] landslides, [2] or river discharge flows to occur.

Contents

It is a statistical measurement typically based on historic data over an extended period, and is used usually for risk analysis. Examples include deciding whether a project should be allowed to go forward in a zone of a certain risk or designing structures to withstand events with a certain return period. The following analysis assumes that the probability of the event occurring does not vary over time and is independent of past events.

Estimating a return period

Recurrence interval

n number of years on record;
m is the rank of observed occurrences when arranged in descending order [3]

For floods, the event may be measured in terms of m3/s or height; for storm surges, in terms of the height of the surge, and similarly for other events. This is Weibull's Formula. [4] :12 [5] [ failed verification ]

Return period as the reciprocal of expected frequency

The theoretical return period between occurrences is the inverse of the average frequency of occurrence. For example, a 10-year flood has a 1/10 = 0.1 or 10% chance of being exceeded in any one year and a 50-year flood has a 0.02 or 2% chance of being exceeded in any one year.

This does not mean that a 100-year flood will happen regularly every 100 years, or only once in 100 years. Despite the connotations of the name "return period". In any given 100-year period, a 100-year event may occur once, twice, more, or not at all, and each outcome has a probability that can be computed as below.

Also, the estimated return period below is a statistic: it is computed from a set of data (the observations), as distinct from the theoretical value in an idealized distribution. One does not actually know that a certain or greater magnitude happens with 1% probability, only that it has been observed exactly once in 100 years.

That distinction is significant because there are few observations of rare events: for instance, if observations go back 400 years, the most extreme event (a 400-year event by the statistical definition) may later be classed, on longer observation, as a 200-year event (if a comparable event immediately occurs) or a 500-year event (if no comparable event occurs for a further 100 years).

Further, one cannot determine the size of a 1000-year event based on such records alone but instead must use a statistical model to predict the magnitude of such an (unobserved) event. Even if the historic return interval is a lot less than 1000 years, if there are a number of less-severe events of a similar nature recorded, the use of such a model is likely to provide useful information to help estimate the future return interval.

Probability distributions

One would like to be able to interpret the return period in probabilistic models. The most logical interpretation for this is to take the return period as the counting rate in a Poisson distribution since it is the expectation value of the rate of occurrences. An alternative interpretation is to take it as the probability for a yearly Bernoulli trial in the binomial distribution. That is disfavoured because each year does not represent an independent Bernoulli trial but is an arbitrary measure of time. This question is mainly academic as the results obtained will be similar under both the Poisson and binomial interpretations.

Poisson

The probability mass function of the Poisson distribution is

where is the number of occurrences the probability is calculated for, the time period of interest, is the return period and is the counting rate.

The probability of no-occurrence can be obtained simply considering the case for . The formula is

Consequently, the probability of exceedance (i.e. the probability of an event "stronger" than the event with return period to occur at least once within the time period of interest) is

Note that for any event with return period , the probability of exceedance within an interval equal to the return period (i.e. ) is independent from the return period and it is equal to . This means, for example, that there is a 63.2% probability of a flood larger than the 50-year return flood to occur within any period of 50 year.

Example

If the return period of occurrence is 243 years () then the probability of exactly one occurrence in ten years is

Binomial

In a given period of for a unit time (e.g. ), the probability of a given number r of events of a return period is given by the binomial distribution as follows.

This is valid only if the probability of more than one occurrence per unit time is zero. Often that is a close approximation, in which case the probabilities yielded by this formula hold approximately.

If in such a way that then

Take

where

T is return interval
n is number of years on record.
m is the number of recorded occurrences of the event being considered

Example

Given that the return period of an event is 100 years,

So the probability that such an event occurs exactly once in 10 successive years is:

Risk analysis

Return period is useful for risk analysis (such as natural, inherent, or hydrologic risk of failure). [6] When dealing with structure design expectations, the return period is useful in calculating the riskiness of the structure.

The probability of at least one event that exceeds design limits during the expected life of the structure is the complement of the probability that no events occur which exceed design limits.

The equation for assessing this parameter is

where

is the expression for the probability of the occurrence of the event in question in a year;
n is the expected life of the structure.

See also

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

<span class="mw-page-title-main">Superparamagnetism</span> Form of magnetism

Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the Néel relaxation time. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the Néel relaxation time, their magnetization appears to be on average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of paramagnets.

<span class="mw-page-title-main">Allan variance</span> Measure of frequency stability in clocks and oscillators

The Allan variance (AVAR), also known as two-sample variance, is a measure of frequency stability in clocks, oscillators and amplifiers. It is named after David W. Allan and expressed mathematically as . The Allan deviation (ADEV), also known as sigma-tau, is the square root of the Allan variance, .

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Student's t-distribution</span> Probability distribution

In probability theory and statistics, Student's t distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

In probability theory, Chebyshev's inequality provides an upper bound on the probability of deviation of a random variable from its mean. More specifically, the probability that a random variable deviates from its mean by more than is at most , where is any positive constant and is the standard deviation.

<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis.

<span class="mw-page-title-main">Cross-correlation</span> Covariance and correlation

In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions. In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a lag of zero, and its size will be the signal energy.

In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R,. People may progress between compartments. The order of the labels usually shows the flow patterns between the compartments; for example SEIS means susceptible, exposed, infectious, then susceptible again.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the opposite ends of the range, and the division of the range could notionally be made at any point.

<span class="mw-page-title-main">68–95–99.7 rule</span> Shorthand used in statistics

In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

In actuarial science and applied probability, ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

In probability theory and statistics, the index of dispersion, dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical model.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

In the theory of renewal processes, a part of the mathematical theory of probability, the residual time or the forward recurrence time is the time between any given time and the next epoch of the renewal process under consideration. In the context of random walks, it is also known as overshoot. Another way to phrase residual time is "how much more time is there to wait?".

An intensity-duration-frequency curve is a mathematical function that relates the intensity of an event with its duration and frequency of occurrence. Frequency is the inverse of the probability of occurrence. These curves are commonly used in hydrology for flood forecasting and civil engineering for urban drainage design. However, the IDF curves are also analysed in hydrometeorology because of the interest in the time concentration or time-structure of the rainfall, but it is also possible to define IDF curves for drought events. Additionally, applications of IDF curves to risk-based design are emerging outside of hydrometeorology, for example some authors developed IDF curves for food supply chain inflow shocks to US cities.

References

  1. ASCE, Task Committee on Hydrology Handbook of Management Group D of (1996). Hydrology Handbook | Books. doi:10.1061/9780784401385. ISBN   978-0-7844-0138-5.
  2. Peres, D. J.; Cancelliere, A. (2016-10-01). "Estimating return period of landslide triggering by Monte Carlo simulation". Journal of Hydrology. Flash floods, hydro-geomorphic response and risk management. 541: 256–271. Bibcode:2016JHyd..541..256P. doi:10.1016/j.jhydrol.2016.03.036.
  3. Kumar, Rajneesh; Bhardwaj, Anil (2015). "Probability analysis of return period of daily maximum rainfall in annual data set of Ludhiana, Punjab". Indian Journal of Agricultural Research. 49 (2): 160. doi:10.5958/0976-058X.2015.00023.2. ISSN   0367-8245.
  4. National Resources Conservation Service (August 2007). "Chapter 5: Stream Hydrology". National Engineering Handbook, Part 654: Stream Restoration Design. Washington, D.C.: U.S. Department of Agriculture. Retrieved 7 February 2023.
  5. Anonymous (2014-11-07). "Flood Estimation Handbook". UK Centre for Ecology & Hydrology. Retrieved 2019-12-21.
  6. Water Resources Engineering, 2005 Edition, John Wiley & Sons, Inc, 2005.