Flood pulse concept

Last updated
The Ganges River Delta, the largest intertidal delta in the world, is an example of river system exhibiting lentic and lotic characteristics that can be described by the flood pulse concept. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal. Ganges River Delta, Bangladesh, India.jpg
The Ganges River Delta, the largest intertidal delta in the world, is an example of river system exhibiting lentic and lotic characteristics that can be described by the flood pulse concept. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal.

The flood pulse concept explains how the periodic inundation and drought (flood pulse) control the lateral exchange of water, nutrients and organisms between the main river channel (or lake) and the connected floodplain. [1] The annual flood pulse is the most important aspect and the most biologically productive feature of a river's ecosystem. [2] [3] describing the movement, distribution and quality of water in river ecosystems and the dynamic interaction in the transition zone between water and land (aquatic/terrestrial transition zones - ATTZ). It contrasts with previous ecological theories which considered floods to be catastrophic events.

Contents

Background

River floodplain systems consist of an area surrounding a river that is periodically flooded by the overflow of the river as well as by precipitation, called the aquatic/terrestrial transition zone (ATTZ). The ATTZ is the area covered by water only during the flooding. [4] This flooding in turn creates unique habitat that is essential to the survival of many different species. [5] The flood pulse concept is unique because it incorporates the outlying rivers and streams which add a lateral aspect to previous concepts, e.g. the River Continuum Concept (RCC) that failed in explain processes that happen in big rivers and their floodplains. From this lateral perspective, rivers can be seen as a collection of width-based water systems. [2]

Flooding consists of multiple stages. First, at the start of the flooding, nutrients rush in from the area where the flood begins. During flood periods, the most important element is called the moving littoral. As flooding begins and water levels increase nutrients that have been mineralized in the dry phase are suspended with sediments in the flood waters and main river. The moving littoral consists of the water from the shoreline to a few meters deep in the river. This pulse of water is the primary driver of high productivity and decomposition rates as it moves nutrients in and out of the system and is good breeding ground for many species of estuarial organisms. [5] At this point in time production rates exceed decomposition rates. As water levels stabilize, decomposition rates outpace production rates, frequently contributing to dissolved oxygen deficiency. [6] When the water starts receding, the moving littoral reverses, concentrating nutrients and contributing to phytoplankton growth.

Living communities and flood types

The flood pulse helps maintain genetic and species diversity in the floodplain ecosystem, and it brings in oxygen to help fauna and decomposition. The flood pulse also increases yields by increasing the surface area of water and showers the land with river biota. Flood plain systems also serve as migration routes, hibernation spots, and spawning locations for many species. [5] For the red-bellied piranha, their two annual reproductive seasons are dependent on the flooding pulse. However, the flood pulse has the potential to overpower some species; when flood pulses occur at unusual times or last for too long, terrestrial vegetation can be overwhelmed. [4] Furthermore, the receding of the flood at the end of the flood pulse can lead to oxygen deficiency.

Human impact

River floodplain systems can be both natural and man-made; the latter occur when dams and levees create a flood plain. [4] Humans have had several effects on the flood pulse. Through ecosystem alterations such as dams, debris removal, channelization, levees, navigation, irrigation, contamination, logging, fire suppression, species introduction, and agricultural runoff, humans have contributed to the destruction of wetlands and the extinction of species. Biota relies on the flood plain for food supply, spawning and shelter, and flood pulses that are too quick or slow interrupt this. This can have devastating effects on riparian ecosystems. [4] [5]

Criticisms and alternative concepts

The flood pulse concept is one of three primary models describing large river ecosystems. [7] The others include the river continuum concept (RCC) and the serial discontinuity concept. [2] Related theories include the nutrient spiraling concept. [8] [9] Many theorists have criticized the flood pulse concept and believe that other concepts could help explain the phenomena that occur in large rivers. Some say that the flood pulse concept is inadequate because it only applies to temperate and tropical systems. [5] The flood pulse concept involves many assumptions; many theorists object to the concept on the basis of these assumptions. The flood pulse concept assumes that all systems are either hierarchical or linear, that physical features control biological structures, and that there is dynamic equilibrium between the biological and the physical rhythms. [4] Because of their criticisms of the flood pulse concept, some theorists prefer the river continuum concept. However, Junk et al. argue that the river continuum concept is not sufficient because it is based on research done on small temperate streams and has mistakenly been applied to all water systems; furthermore, the river continuum concept does not explain habitats that fluctuate between lotic and lentic states, whereas the flood pulse concept adequately covers these systems. [5]

Related Research Articles

Ecosystem Community of living organisms together with the nonliving components of their environment

An ecosystem is a community of living organisms in conjunction with the nonliving components of their environment, interacting as a system. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes.

Floodplain Land adjacent to a river which is flooded during periods of high discharge

A floodplain or flood plain or flood-plain is an area of land adjacent to a river which stretches from the banks of its channel to the base of the enclosing valley walls, and which experiences flooding during periods of high discharge. The soils usually consist of clays, silts, sands, and gravels deposited during floods.

Swamp A forested wetland

A swamp is a forested wetland. Swamps are considered to be transition zones because both land and water play a role in creating this environment. Swamps vary in size and are located all around the world. The water of a swamp may be fresh water, brackish water, or seawater. Freshwater swamps form along large rivers or lakes where they are critically dependent upon rainwater and seasonal flooding to maintain natural water level fluctuations. Saltwater swamps are found along tropical and subtropical coastlines. Some swamps have hammocks, or dry-land protrusions, covered by aquatic vegetation, or vegetation that tolerates periodic inundation or soil saturation. The two main types of swamp are "true" or swamp forests and "transitional" or shrub swamps. In the boreal regions of Canada, the word swamp is colloquially used for what is more correctly termed a bog, fen, or muskeg. Some of the world's largest swamps are found along major rivers such as the Amazon, the Mississippi, and the Congo.

Wetland Land area that is permanently or seasonally saturated with water

A wetland is a distinct ecosystem that is flooded by water, either permanently or seasonally, where oxygen-free processes prevail. The primary factor that distinguishes wetlands from other land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique hydric soil. Wetlands play a number of functions, including water purification, water storage, processing of carbon and other nutrients, stabilization of shorelines, and support of plants and animals. Wetlands are also considered the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal life. Whether any individual wetland performs these functions, and the degree to which it performs them, depends on characteristics of that wetland and the lands and waters near it. Methods for rapidly assessing these functions, wetland ecological health, and general wetland condition have been developed in many regions and have contributed to wetland conservation partly by raising public awareness of the functions and the ecosystem services some wetlands provide.

Marsh wetland that is dominated by herbaceous rather than woody plant species

A marsh is a wetland that is dominated by herbaceous rather than woody plant species. Marshes can often be found at the edges of lakes and streams, where they form a transition between the aquatic and terrestrial ecosystems. They are often dominated by grasses, rushes or reeds. If woody plants are present they tend to be low-growing shrubs, and then sometimes called carrs. This form of vegetation is what differentiates marshes from other types of wetland such as swamps, which are dominated by trees, and mires, which are wetlands that have accumulated deposits of acidic peat.

Energy flow (ecology)

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, the head of the arrows show the direction energy is moving in, and that energy is lost as heat at each step along the way.

Littoral zone Part of a sea, lake or river that is close to the shore

The littoral zone or nearshore is the part of a sea, lake, or river that is close to the shore. In coastal environments, the littoral zone extends from the high water mark, which is rarely inundated, to shoreline areas that are permanently submerged. The littoral zone always includes this intertidal zone, and the terms are often used interchangeably. However, the meaning of littoral zone can extend well beyond the intertidal zone.

Pantanal Tropical wetland in Brazil, Bolivia and Paraguay

The Pantanal is a natural region encompassing the world's largest tropical wetland area, and the world's largest flooded grasslands. It is located mostly within the Brazilian state of Mato Grosso do Sul, but it extends into Mato Grosso and portions of Bolivia and Paraguay. It sprawls over an area estimated at between 140,000 and 195,000 square kilometres. Various subregional ecosystems exist, each with distinct hydrological, geological and ecological characteristics; up to 12 of them have been defined.

Aquatic ecosystem ecosystem in a body of water

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

River ecosystem

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks.

A lake ecosystem or lacustrine ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (non-living) physical and chemical interactions. Lake ecosystems are a prime example of lentic ecosystems, which include ponds, lakes and wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two fields form the more general study area of freshwater or aquatic ecology.

Pond A relatively small body of standing water

A pond is an area filled with water, either natural or artificial, that is smaller than a lake. Ponds may arise naturally in floodplains as part of a river system or can simply be an isolated depression that filled with runoff, groundwater, or precipitation. As such, ponds may be freshwater, saltwater, or brackish in nature.

River Natural flowing watercourse

A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as stream, creek, brook, rivulet, and rill. There are no official definitions for the generic term river as applied to geographic features, although in some countries or communities a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and northeast England, and "beck" in northern England. Sometimes a river is defined as being larger than a creek, but not always: the language is vague.

The River Continuum Concept (RCC) is a model for classifying and describing flowing water, in addition to the classification of individual sections of waters after the occurrence of indicator organisms. The theory is based on the concept of dynamic equilibrium in which streamforms balance between physical parameters, such as width, depth, velocity, and sediment load, also taking into account biological factors. It offers an introduction to map out biological communities and also an explanation for their sequence in individual sections of water. This allows the structure of the river to be more predictable as to the biological properties of the water. The concept was first developed in 1980 by Robin L. Vannote, with fellow researchers at the Stroud Water Research Center.

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

Igapó

Igapó is a word used in Brazil for blackwater-flooded forests in the Amazon biome. These forests and similar swamp forests are seasonally inundated with freshwater. They typically occur along the lower reaches of rivers and around freshwater lakes. Freshwater swamp forests are found in a range of climate zones, from boreal through temperate and subtropical to tropical. In the Amazon Basin of Brazil, a seasonally whitewater-flooded forest is known as a várzea, which is similar to igapó in many regards; the key difference between the two habitats is in the type of water that floods the forest.

A várzea forest is a seasonal floodplain forest inundated by whitewater rivers that occurs in the Amazon biome. Until the late 1970s, the definition was less clear and várzea was often used for all periodically flooded Amazonian forests.

Aquatic-terrestrial subsidies

Energy, nutrients, and contaminants derived from aquatic ecosystems and transferred to terrestrial ecosystems are termed aquatic-terrestrial subsidies or, more simply, aquatic subsidies. Common examples of aquatic subsidies include organisms that move across habitat boundaries and deposit their nutrients as they decompose in terrestrial habitats or are consumed by terrestrial predators, such as spiders, lizards, birds, and bats. Aquatic insects that develop within streams and lakes before emerging as winged adults and moving to terrestrial habitats contribute to aquatic subsidies. Fish removed from aquatic ecosystems by terrestrial predators are another important example. Conversely, the flow of energy and nutrients from terrestrial ecosystems to aquatic ecosystems are considered terrestrial subsidies; both aquatic subsidies and terrestrial subsidies are types of cross-boundary subsidies. Energy and nutrients are derived from outside the ecosystem where they are ultimately consumed.

Whitewater river (river type)

A whitewater river is classified based on its chemistry, sediments and water colour. Whitewater rivers have high levels of suspended sediments, giving the water a pH that is near-neutral, a high electric conductivity and a pale muddy, coffee and cream-like colour. Whitewater rivers are of great ecological importance and are important to local fisheries. The major seasonal Amazonian floodplains known as várzea receive their water from them.

Vulnerable waters refer to geographically-isolated wetlands (GIWs) and to ephemeral and intermittent streams. Ephemeral and intermittent streams are seasonally flowing and are located in headwater position. They are the outer and smallest stems of hydrological networks. Isolated wetlands are located outside floodplain and show poor surface connection to tributaries or floodplains. Geographically isolated wetlands encompass saturated depressions that are the result of fluvial, aeolian, glacial and/or coastal geomorphological processes. They may be natural landforms or the result of human interventions. Vulnerable waters represent the major proportion of river networks.

References

  1. https://www.nrem.iastate.edu/class/assets/aecl518/Discussion%20Readings/Junk_et_al._1989.pdf (Junk et al., 1989)
  2. 1 2 3 Thorp, J. H., & Delong, M. D. (1994). The Riverine Productivity Model: An Heuristic View of Carbon Sources and Organic Processing in Large River Ecosystems. Oikos , 305-308
  3. Benke, A. C., Chaubey, I., Ward, G. M., & Dunn, E. L. (2000). Flood Pulse Dynamics of an Unregulated River Floodplain in the Southeastern U.S. Coastal Plain. Ecology , 2730-2741.
  4. 1 2 3 4 5 Johnson, Barry L., William B. Richardson, and Teresa J. Naimo. 1995. Past, Present, and Future Concepts in Large River Ecology. p. 134-141. In BioScience, Vol. 45.
  5. 1 2 3 4 5 6 Junk, W.J., P.B. Bayley, and R.E. Sparks. 1989. The flood pulse concept in river-floodplain systems. p. 110-127. In D.P. Dodge [ed.] Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106.
  6. Bayley, Peter B. 1995. Understanding Large River: Floodplain Ecosystems. p. 153-158. In BioScience, Vol. 45.
  7. Tockner, K., Malard, F., & Ward, J. (2000). An extension of the flood pulse concept. Hydrological Process, 2861-2883.
  8. Webster, Jackson R.; Patten, Bernard C. (1979). "Effects of Watershed Perturbation on Stream Potassium and Calcium Dynamics". Ecological Monographs. 49 (1): 51–72. doi:10.2307/1942572. ISSN   0012-9615.
  9. Newbold, J. Denis; Elwood, Jerry W.; O'Neill, Robert V.; Winkle, Webster Van (2011-04-10). "Measuring Nutrient Spiralling in Streams". Canadian Journal of Fisheries and Aquatic Sciences. doi:10.1139/f81-114.