Riffle

Last updated
Riffle on the Onega River Shivera.jpg
Riffle on the Onega River

A riffle is a shallow landform in a flowing channel. [1] Colloquially, it is a shallow place in a river where water flows quickly past rocks. [2] However, in geology a riffle has specific characteristics.

Contents

Topographic, sedimentary and hydraulic indicators

Riffles are almost always found to have a very low discharge compared to the flow that fills the channel [3] (approximately 10–20%), and as a result the water moving over a riffle appears shallow and fast, with a wavy, disturbed water surface. The water's surface over a riffle at low flow also has a much steeper slope than that over other in-channel landforms. Channel sections with a mean water surface slope of roughly 0.1 to 0.5% exhibit riffles, though they can occur in steeper or gentler sloping channels with coarser or finer bed materials, respectively. Except in the period after a flood (when fresh material is deposited on a riffle), the sediment on the riverbed in a riffle is usually much coarser than on that in any other in-channel landform.

Terrestrial valleys normally consist of channels – geometric depressions in the valley floor carved by flowing water – and overbank regions that include floodplains and terraces. Some channels have shapes and sizes that hardly change along the river; these do not have riffles. However, many channels exhibit readily apparent changes in width, bed elevation, and slope. In these cases, scientists realized that the riverbed often tends to rise and fall with distance downstream relative to an average elevation of the river's slope. That led scientists to map the bed elevation down the deepest path in a channel, called the thalweg, to obtain a longitudinal profile. Then, the piecewise linear slope of the river is computed and removed to leave just the rise and fall of the elevation about the channel's trendline. According to the zero-crossing method, [4] [5] riffles are all the locations along the channel whose residual elevation is greater than zero. Because of the prevalence of this method for identifying and mapping riffles, riffles are often thought of as part of a paired sequence, alternating with pools (the lows between the riffles). However, modern topographic maps of rivers with meter-scale resolution reveal that rivers exhibit a diversity of in-channel landforms. [6]

For a long time, scientists have observed that, all other things being equal, riffles tend to be substantially wider than other in-channel landforms, [7] but only recently has there been high enough quality of river maps to confirm that this is true. [8] The physics mechanism that explains why this happens is called flow convergence routing. [9] [10] This mechanism may be used in river engineering to design self-sustainable riffles, [11] [12] given a suitable sediment supply and flow regime. When an in-channel landform is shallow and narrow, instead of shallow and wide, it is called a nozzle.

Importance to Environment

Riffles are very important to the life in a stream, and many aquatic species rely on them in one way or another. Many species of benthic macroinvertebrates rely on the highly oxygenated, fairly unsedimented waters present in a riffle. Many species of fish, including rare and endangered species use riffles to spawn in. Not only do fish spawn in and around riffles, they are also productive feeding grounds for fish, and in turn other predators that feed on fish. Riffles also serve to aerate the water, increasing the amount of dissolved oxygen in the body of water. [13] Water with high and relatively stable levels of dissolved oxygen is typically considered to be a healthy ecosystem because it can generally support greater biodiversity and total biomass.

Macroinvertebrates in riffles

Litter patches are a collection of leaves, coarse particulate organic matter, and small woody stems that can be found throughout riffles. [14] In riffles, these patches form at a velocity between 13 and 89 cm/sec, which allows for certain types of litter to be more abundant in riffles because they can stand up to the flow. [14] Leaf litter is most commonly found in riffles, and thus influenced the type of macroinvertebrate functional group is found in riffles, like stoneflies being the dominant shredder species found in riffles. [14] Other macroinvertebrates found in riffles are mayflies (Ephemeroptera). While, in general, the population densities are higher in riffles than pools, some groups like flies Diptera are somewhat less present in riffles, with a low density in riffles compared to pools. [15] Nonbiting midges( Diptera, Chironomidae ) and aquatic worms (Class Oligochaeta) are also located in riffles. [16]

A raft in a Class II- riffle on the Middle Fork Salmon Raft in a Class II- Riffle.jpg
A raft in a Class II- riffle on the Middle Fork Salmon

Riffles also create a safe habitat for macroinvertebrates because of the varying depth, velocity, and substrate type found in the riffle. [17] Densities of macroinvertebrates vary riffle to riffle because of seasonality or the habitat surrounding the riffle, but macroinvertebrate makeup is fairly consistent. [17] While it can only be assumed that riffles can host a higher level of densities because of higher dissolved oxygen levels, there is a proven positive association between phosphate levels and macroinvertebrates in riffles, indicating that phosphate is an important nutrient for them. [17] Seasonality is important for macroinvertebrate densities, and is characterized by temperature, like summer and winter, or it can be characterized by wetness, like wet and dry seasons. Macroinvertebrates are found in lower abundance during the rainy or wet season due to the high, constant amount of water into the riffle changing the system’s temperature, water velocity, and the aquatic community structure. [16] Also, food, shelter and low flow rates during the dry season make it a more habitable time for higher densities of macroinvertebrates. [16]

Anthropogenic threats

Riffles provide important habitat and food production for various aquatic organisms, but humans have altered aquatic ecosystems worldwide through infrastructure and land use changes. [18] Human interference of stream or river flow decreases sediment sizes, resulting in less riffles. [19]

Specifically, weirs and other dams have reduced existing riffles by flattening the channel with smaller substrate, resulting in habitat fragmentation. [19] [20] Dam removal has increased in recent times and its effects on riffles vary and are complex, but generally, riffles may redevelop. [18] As these riffles develop, however, they often have a lower biodiversity than the pre-dam ecosystem but benefit aquatic biodiversity in the long term. [18] Following weir removal, riffle fish populations have increased in diversity and density, and these fish have moved upstream to inhabit new riffles that redevelop after dam removal. [18] [21] The importance of riffles in supporting diverse assemblages of aquatic biota within streams and rivers may contribute to the increasing trend of dam removal.

Human land use change, specifically development of land, can indirectly affect riffles and riffle quality. [22] Terrestrial vegetation, such as tree branches and leaf litter, contribute to the formation of riffles and stabilization of the ecosystem's channel, and as development reduces this vegetation, riffles may be diminished. [23] Species richness and diversity within riffles are susceptible to anthropogenic land use changes, and management options for restoring these riffles to increase aquatic biodiversity include removing sand and sedimentation and enhancing water flow, to offset impacts from land use change. [20]

Aquaria

In the fishkeeping world, a "riffle tank" is one specializing in aquatic life that originates in places with powerful currents like riffles. These are usually emulated with very powerful pumps, shallow 'lowboy' tanks, and larger substrate like cobbles and large gravel. Common inhabitants include North American native fish including Etheostoma, tropical gobies such as Stiphodon, and so called 'hillstream' loaches like Sewellia. Oftentimes, these tanks are lacking in submersed vegetation, instead using botanicals, emersed plants, or no plant material besides aufwuchs on the substrate. [24]

Related Research Articles

<span class="mw-page-title-main">Sediment</span> Particulate solid matter that is deposited on the surface of land

Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone through lithification.

<span class="mw-page-title-main">River delta</span> Silt deposition landform at the mouth of a river

A river delta is a landform shaped like a triangle, created by the deposition of sediment that is carried by a river and enters slower-moving or stagnant water. This occurs at a river mouth, when it enters an ocean, sea, estuary, lake, reservoir, or another river that cannot carry away the supplied sediment. It is so named because its triangle shape resembles the uppercase Greek letter delta, Δ. The size and shape of a delta are controlled by the balance between watershed processes that supply sediment, and receiving basin processes that redistribute, sequester, and export that sediment. The size, geometry, and location of the receiving basin also plays an important role in delta evolution.

<span class="mw-page-title-main">Snowy River</span> River in south-eastern Australia

The Snowy River is a major river in south-eastern Australia. It originates on the slopes of Mount Kosciuszko, Australia's highest mainland peak, draining the eastern slopes of the Snowy Mountains in New South Wales, before flowing through the Alpine National Park and the Snowy River National Park in Victoria and emptying into Bass Strait.

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.

<span class="mw-page-title-main">Bioindicator</span> Species that reveals the status of an environment

A bioindicator is any species or group of species whose function, population, or status can reveal the qualitative status of the environment. The most common indicator species are animals. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot.

The hyporheic zone is the region of sediment and porous space beneath and alongside a stream bed, where there is mixing of shallow groundwater and surface water. The flow dynamics and behavior in this zone is recognized to be important for surface water/groundwater interactions, as well as fish spawning, among other processes. As an innovative urban water management practice, the hyporheic zone can be designed by engineers and actively managed for improvements in both water quality and riparian habitat.

<span class="mw-page-title-main">Plunge pool</span> Depression at the base of a waterfall

A plunge pool is a deep depression in a stream bed at the base of a waterfall or shut-in. It is created by the erosional forces of cascading water on the rocks at formation's base where the water impacts. The term may refer to the water occupying the depression, or the depression itself.

<span class="mw-page-title-main">River ecosystem</span> Type of aquatic ecosystem with flowing freshwater

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed's gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

<span class="mw-page-title-main">Riffle-pool sequence</span>

In a flowing stream, a riffle-pool sequence develops as a stream's hydrological flow structure alternates from areas of relatively shallow to deeper water. This sequence is present only in streams carrying gravel or coarser sediments. Riffles are formed in shallow areas by coarser materials, such as gravel deposits, over which water flows. Pools are deeper, calmer areas whose bed load is made up of finer material such as silt. Streams with only sand or silt laden beds do not develop the feature. The sequence within a stream bed commonly occurs at intervals of from 5 to 7 stream widths. Meandering streams with relatively coarse bed load tend to develop a riffle-pool sequence with pools in the outsides of the bends and riffles in the crossovers between one meander to the next on the opposite margin of the stream. The pools are areas of active erosion and the material eroded tends to be deposited in the riffle areas between them.

<span class="mw-page-title-main">Intermittent river</span> River that periodically ceases to flow

Intermittent, temporary or seasonal rivers or streams cease to flow every year or at least twice every five years. Such rivers drain large arid and semi-arid areas, covering approximately a third of the earth's surface. The extent of temporary rivers is increasing, as many formerly perennial rivers are becoming temporary because of increasing water demand, particularly for irrigation. Despite inconsistent water flow, intermittent rivers are considered land-forming agents in arid regions, as they are agents of significant deposition and erosion during flood events. The combination of dry crusted soils and the highly erosive energy of the rain cause sediment resuspension and transport to the coastal areas. They are among the aquatic habitats most altered by human activities. During the summer even under no flow conditions the point sources are still active such as the wastewater effluents, resulting in nutrients and organic pollutants accumulating in the sediment. Sediment operates as a pollution inventory and pollutants are moved to the next basin with the first flush. Their vulnerability is intensified by the conflict between water use demand and aquatic ecosystem conservation. Advanced modelling tools have been developed to better describe intermittent flow dynamic changes such as the tempQsim model.

<span class="mw-page-title-main">Perennial stream</span> Type of river

A perennial stream is a stream that has continuous flow of surface water throughout the year in at least parts of its catchment during seasons of normal rainfall, as opposed to one whose flow is intermittent. In the absence of irregular, prolonged or extreme drought, a perennial stream is a watercourse, or segment, element or emerging body of water which continually delivers groundwater. For example, an artificial disruption of stream, variability in flow or stream selection associated with the activity in hydropower installations, do not affect this status. Perennial streams do not include stagnant water, reservoirs, cutoff lakes and ponds that persist throughout the year. All other streams, or parts of them, should be considered seasonal rivers or lakes. The stream can cycle from intermittent to perpetual through multiple iterations.

<span class="mw-page-title-main">Stream pool</span> Deep and slow-moving stretch of a watercourse

A stream pool, in hydrology, is a stretch of a river or stream in which the water depth is above average and the water velocity is below average.

<span class="mw-page-title-main">Drop structure</span> Structure that lowers elevation of water in a controlled fashion

A drop structure, also known as a grade control, sill, or weir, is a manmade structure, typically small and built on minor streams, or as part of a dam's spillway, to pass water to a lower elevation while controlling the energy and velocity of the water as it passes over. Unlike most dams, drop structures are usually not built for water impoundment, diversion or raising the water level. Mostly built on watercourses with steep gradients, they serve other purposes such as water oxygenation and erosion prevention.

<span class="mw-page-title-main">Stream restoration</span>

Stream restoration or river restoration, also sometimes referred to as river reclamation, is work conducted to improve the environmental health of a river or stream, in support of biodiversity, recreation, flood management and/or landscape development.

<span class="mw-page-title-main">Log jam</span> Accumulation of large wood in a stream or river, preventing movement downstream

A log jam is a naturally occurring phenomenon characterized by a dense accumulation of tree trunks and pieces of large wood across a vast section of a river, stream, or lake. Log jams in rivers and streams often span the entirety of the water's surface from bank to bank. Log jams form when trees floating in the water become entangled with other trees floating in the water or become snagged on rocks, large woody debris, or other objects anchored underwater. They can build up slowly over months or years, or they can happen instantaneously when large numbers of trees are swept into the water after natural disasters. A notable example caused by a natural disaster is the log jam that occurred in Spirit Lake following a landslide triggered by the eruption of Mount St. Helens. Until they are dismantled by natural causes or humans, log jams can grow quickly, as more wood arriving from upstream becomes entangled in the mass. Log jams can persist for many decades, as is the case with the log jam in Spirit Lake.

<span class="mw-page-title-main">Alluvial river</span> Type of river

An alluvial river is one in which the bed and banks are made up of mobile sediment and/or soil. Alluvial rivers are self-formed, meaning that their channels are shaped by the magnitude and frequency of the floods that they experience, and the ability of these floods to erode, deposit, and transport sediment. For this reason, alluvial rivers can assume a number of forms based on the properties of their banks; the flows they experience; the local riparian ecology; and the amount, size, and type of sediment that they carry.

<span class="mw-page-title-main">River incision</span>

River incision is the narrow erosion caused by a river or stream that is far from its base level. River incision is common after tectonic uplift of the landscape. Incision by multiple rivers result in a dissected landscape, for example a dissected plateau. River incision is the natural process by which a river cuts downward into its bed, deepening the active channel. Though it is a natural process, it can be accelerated rapidly by human factors including land use changes such as timber harvest, mining, agriculture, and road and dam construction. The rate of incision is a function of basal shear-stress. Shear stress is increased by factors such as sediment in the water, which increase its density. Shear stress is proportional to water mass, gravity, and WSS:

Vulnerable waters refer to geographically isolated wetlands (GIWs) and to ephemeral and intermittent streams. Ephemeral and intermittent streams are seasonally flowing and are located in headwater position. They are the outer and smallest stems of hydrological networks. Isolated wetlands are located outside floodplain and show poor surface connection to tributaries or floodplains. Geographically isolated wetlands encompass saturated depressions that are the result of fluvial, aeolian, glacial and/or coastal geomorphological processes. They may be natural landforms or the result of human interventions. Vulnerable waters represent the major proportion of river networks.

Legacy sediment (LS) is depositional bodies of sediment inherited from the increase of human activities since the Neolithic. These include a broad range of land use and land cover changes, such as agricultural clearance, lumbering and clearance of native vegetation, mining, road building, urbanization, as well as alterations brought to river systems in the form of dams and other engineering structures meant to control and regulate natural fluvial processes (erosion, deposition, lateral migration, meandering). The concept of LS is used in geomorphology, ecology, as well as in water quality and toxicological studies.

Ecohydraulics is an interdisciplinary science studying the hydrodynamic factors that affect the survival and reproduction of aquatic organisms and the activities of aquatic organisms that affect hydraulics and water quality. Considerations include habitat maintenance or development, habitat-flow interactions, and organism responses. Ecohydraulics assesses the magnitude and timing of flows necessary to maintain a river ecosystem and provides tools to characterize the relation between flow discharge, flow field, and the availability of habitat within a river ecosystem. Based on this relation and insights into the hydraulic conditions optimal for different species or communities, ecohydraulics-modeling predicts how hydraulic conditions in a river change, under different development scenarios, the aquatic habitat of species or ecological communities. Similar considerations also apply to coastal, lake, and marine eco-systems.

References

  1. Leopold, Luna; Wolman, M. Gordon (1957). "River channel patterns: Braided, meandering, and straight". Professional Paper 282-B. United States Geological Survey: 50.{{cite journal}}: Cite journal requires |journal= (help)
  2. "LakeSuperiorStreams - Riffles, runs and pools". www.lakesuperiorstreams.org. Retrieved 2022-02-22.
  3. Wyrick, J. R.; Senter, A. E.; Pasternack, G. B. (2014-04-01). "Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms". Geomorphology. 210: 14–22. Bibcode:2014Geomo.210...14W. doi:10.1016/j.geomorph.2013.12.013. S2CID   129784282.
  4. Milne, J. A. (1982-04-01). "Bed-material size and the riffle-pool sequence". Sedimentology. 29 (2): 267–278. Bibcode:1982Sedim..29..267M. doi:10.1111/j.1365-3091.1982.tb01723.x. ISSN   1365-3091.
  5. Carling, Paul A.; Orr, Harriet G. (2000-04-01). "Morphology of riffle–pool sequences in the River Severn, England". Earth Surface Processes and Landforms . 25 (4): 369–384. doi:10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5. ISSN   1096-9837.
  6. Wyrick, J. R.; Pasternack, G. B. (2014-05-15). "Geospatial organization of fluvial landforms in a gravel–cobble river: Beyond the riffle–pool couplet". Geomorphology. 213: 48–65. Bibcode:2014Geomo.213...48W. doi:10.1016/j.geomorph.2013.12.040. S2CID   67792218.
  7. Richards, K. S. (1976-06-01). "Channel width and the riffle-pool sequence". GSA Bulletin. 87 (6): 883–890. Bibcode:1976GSAB...87..883R. doi:10.1130/0016-7606(1976)87<883:CWATRS>2.0.CO;2. ISSN   0016-7606.
  8. Brown, Rocko A.; Pasternack, Gregory B. (2017-01-11). "Bed and width oscillations form coherent patterns in a partially confined, regulated gravel–cobble-bedded river adjusting to anthropogenic disturbances". Earth Surface Dynamics. 5 (1): 1–20. Bibcode:2017ESuD....5....1B. doi: 10.5194/esurf-5-1-2017 . ISSN   2196-6311.
  9. MacWilliams, Michael L.; Wheaton, Joseph M.; Pasternack, Gregory B.; Street, Robert L.; Kitanidis, Peter K. (2006-10-01). "Flow convergence routing hypothesis for pool-riffle maintenance in alluvial rivers" (PDF). Water Resources Research. 42 (10): W10427. Bibcode:2006WRR....4210427M. doi: 10.1029/2005WR004391 . ISSN   1944-7973.
  10. Sawyer, April M.; Pasternack, Gregory B.; Moir, Hamish J.; Fulton, Aaron A. (2010-01-15). "Riffle-pool maintenance and flow convergence routing observed on a large gravel-bed river". Geomorphology. 114 (3): 143–160. Bibcode:2010Geomo.114..143S. doi:10.1016/j.geomorph.2009.06.021.
  11. Wheaton, Joseph M.; Brasington, James; Darby, Stephen E.; Merz, Joseph; Pasternack, Gregory B.; Sear, David; Vericat, Damiá (2010-05-01). "Linking geomorphic changes to salmonid habitat at a scale relevant to fish". River Research and Applications. 26 (4): 469–486. doi:10.1002/rra.1305. ISSN   1535-1467. S2CID   130259860.
  12. Brown, Rocko A.; Pasternack, Gregory B.; Lin, Tin (2016-04-01). "The Topographic Design of River Channels for Form-Process Linkages". Environmental Management. 57 (4): 929–942. Bibcode:2016EnMan..57..929B. doi:10.1007/s00267-015-0648-0. ISSN   0364-152X. PMID   26707499. S2CID   206946036.
  13. Gary Chapman (1986). Ambient Aquatic Life Water Quality Criteria for Dissolved Oxygen. U.S. Environmental Protection Agency, Office of Water Regulations and Standards. p. 3.
  14. 1 2 3 Kobayashi, S.; Kagaya, T. (2002-04-01). "Differences in litter characteristics and macroinvertebrate assemblages between litter patches in pools and riffles in a headwater stream". Limnology. 3 (1): 37–42. doi:10.1007/s102010200004. ISSN   1439-8621. S2CID   23951148.
  15. Logan, P.; Brooker, M. P. (1983-01-01). "The macroinvertebrate faunas of riffles and pools". Water Research. 17 (3): 263–270. doi:10.1016/0043-1354(83)90179-3. ISSN   0043-1354.
  16. 1 2 3 Righi-Cavallaro, Karina Ocampo; Roche, Kennedy Francis; Froehlich, Otávio; Cavallaro, Marcel Rodrigo (September 2010). "Structure of macroinvertebrate communities in riffles of a Neotropical karst stream in the wet and dry seasons". Acta Limnologica Brasiliensia. 22 (3): 306–316. doi: 10.4322/actalb.02203007 . ISSN   2179-975X.
  17. 1 2 3 Cook, Danielle R.; Sullivan, S. Mažeika P. (2018). "Associations between riffle development and aquatic biota following lowhead dam removal". Environmental Monitoring and Assessment. 190 (6): 339. doi:10.1007/s10661-018-6716-1. ISSN   0167-6369. PMC   5945803 . PMID   29748723.
  18. 1 2 3 4 Cook, Danielle R.; Sullivan, S. Mažeika P. (2018). "Associations between riffle development and aquatic biota following lowhead dam removal". Environmental Monitoring and Assessment. 190 (6): 339. doi:10.1007/s10661-018-6716-1. ISSN   0167-6369. PMC   5945803 . PMID   29748723.
  19. 1 2 Salant, Nira L.; Schmidt, John C.; Budy, Phaedra; Wilcock, Peter R. (2012). "Unintended consequences of restoration: Loss of riffles and gravel substrates following weir installation". Journal of Environmental Management. 109: 154–163. doi:10.1016/j.jenvman.2012.05.013. ISSN   0301-4797. PMID   22728828.
  20. 1 2 Faulks, Leanne K.; Gilligan, Dean M.; Beheregaray, Luciano B. (2011). "The role of anthropogenic vs. natural in-stream structures in determining connectivity and genetic diversity in an endangered freshwater fish, Macquarie perch (Macquaria australasica): Anthropogenic vs. natural in-stream structures in M. australasica". Evolutionary Applications. 4 (4): 589–601. doi:10.1111/j.1752-4571.2011.00183.x. PMC   3352423 . PMID   25568007.
  21. Bushaw-Newton, Karen L.; Hart, David D.; Pizzuto, James E.; Thomson, James R.; Egan, Jennifer; Ashley, Jeffrey T.; Johnson, Thomas E.; Horwitz, Richard J.; Keeley, Melissa; Lawrence, Joy; Charles, Don (2002). "An Integrative Approach Towards Understanding Ecological Responses to Dam Removal: The Manatawny Creek Study". Journal of the American Water Resources Association. 38 (6): 1581–1599. Bibcode:2002JAWRA..38.1581B. doi:10.1111/j.1752-1688.2002.tb04366.x. ISSN   1093-474X. S2CID   129641512.
  22. MALONEY, KELLY O.; WELLER, DONALD E. (2010). "Anthropogenic disturbance and streams: land use and land-use change affect stream ecosystems via multiple pathways". Freshwater Biology. 56 (3): 611–626. doi:10.1111/j.1365-2427.2010.02522.x. ISSN   0046-5070.
  23. Amaral, P. H. M. d.; Silveira, L. S. d.; Rosa, B. F. J. V.; Oliveira, V. C. d.; Alves, R. d. G. (2015). "Influence of Habitat and Land Use on the Assemblages of Ephemeroptera, Plecoptera, and Trichoptera in Neotropical Streams". Journal of Insect Science. 15 (1): 60. doi:10.1093/jisesa/iev042. ISSN   1536-2442. PMC   4535583 . PMID   25989807.
  24. Setting up a Riffle Tank, by Cliff Zoller