Dissolved load

Last updated

Dissolved load is the portion of a stream's total sediment load that is carried in solution, especially ions from chemical weathering. It is a major contributor to the total amount of material removed from a river's drainage basin, along with suspended load and bed load. The amount of material carried as dissolved load is typically much smaller than the suspended load, [1] though this is not always the case, particularly when the available river flow is mostly harnessed for purposes such as irrigation or industrial uses. Dissolved load comprises a significant portion of the total material flux out of a landscape, and its composition is important in regulating the chemistry and biology of the stream water.

Contents

Dissolved load is one of three types of stream load, along with suspended load and bed load. Stream Load.gif
Dissolved load is one of three types of stream load, along with suspended load and bed load.

The dissolved load is primarily controlled by the rate of chemical weathering, which depends on climate and weather conditions such as moisture and temperature. [2] Dissolved load has many useful applications within the field of geology, including erosion, denudation, and reconstructing climate in the past.

Measurement techniques

Dissolved load is typically measured by taking samples of water from a river and running various scientific tests on them. First, the pH, conductivity, and bicarbonate alkalinity of the sample are measured. Next, samples are filtered to remove any suspended sediments and preserved with chloroform to prevent growth of microorganisms, while the others are acidified with hydrochloric acid added to keep dissolved ions from precipitating out of solution. Then, various chemical tests are applied to determine the concentration of each solute. For example, the concentrations of sodium and potassium ions can be determined by flame photometry, while the calcium and magnesium ion concentrations can be determined by atomic absorption spectrophotometry. [3]

Applications

Reconstructing climate

Dissolved load can provide valuable information about the rate of soil formation and other processes of chemical erosion. In particular, the mass balance between the dissolved load and solid phase is helpful in determining surface dynamics. In addition, dissolved load can be used to reconstruct the climate of the Earth in the past. This is because chemical weathering is the major contributor to the dissolved load of a stream. The chemical weathering of silicate rocks is the primary sink for carbon dioxide in the atmosphere, because atmospheric carbon dioxide is converted into carbonate rocks in the carbonate–silicate cycle. Carbon dioxide concentrations are the primary control of the greenhouse effect, which determines the temperature of the Earth. [4]

Denudation

Denudation is the process of wearing away the top layers of Earth's landscape. Because the rate of denudation is normally too small to directly measure, it can be indirectly determined by measuring the sediment load of the streams that drain the area in question. This is possible because any material that passes through a certain point on a stream is guaranteed to have come from somewhere in the stream's drainage basin upstream of that point. As topographic relief increases, the dissolved load's contribution to the total stream load decreases due to the fact that on steeper surfaces, rain is less likely to infiltrate the rocks, leading to less chemical weathering, which decreases the dissolved load. [5]

Salt export

The process of carrying salts by water to the sea or a land-locked lake from a river basin is called salt export. When adequate salt export is not occurring, the river basin area gradually converts into saline soils and/or alkali soils, particularly in lower reaches. [6]

Dissolved loads of selected major rivers

Dissolved loads of selected major world rivers [7] [8]
RiverDrainage area, 106 km2Discharge, 109 m3/yrTotal dissolved solids (TDS), 106 tonnes/yr
Xijiang 0.353010.14
Changjiang 1.951063226
Huanghe 0.7454884
Ganges-Brahmaputra 1.481071129.5
Lena 2.4453250.6
Amazon 4.696930324.6
Orinoco 1.00110051.3
Krishna 0.2513010.4
Godavari 0.319217
Kaveri 0.09213.5
Ganges 0.7549384
World total10137000 [9] 3843.0

See also

Related Research Articles

<span class="mw-page-title-main">Mountain range</span> Geographic area containing several geologically related mountains

A mountain range or hill range is a series of mountains or hills arranged in a line and connected by high ground. A mountain system or mountain belt is a group of mountain ranges with similarity in form, structure, and alignment that have arisen from the same cause, usually an orogeny. Mountain ranges are formed by a variety of geological processes, but most of the significant ones on Earth are the result of plate tectonics. Mountain ranges are also found on many planetary mass objects in the Solar System and are likely a feature of most terrestrial planets.

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite and is the main component of eggshells, gastropod shells, shellfish skeletons and pearls. Things containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is created when calcium ions in hard water react with carbonate ions to create limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

<span class="mw-page-title-main">Carbon cycle</span> Natural processes of carbon exchange

The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to make Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks. Carbon sinks in the land and the ocean each currently take up about one-quarter of anthropogenic carbon emissions each year.

<span class="mw-page-title-main">Geomorphology</span> Scientific study of landforms

Geomorphology is the scientific study of the origin and evolution of topographic and bathymetric features created by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.

<span class="mw-page-title-main">Limnology</span> Science of inland aquatic ecosystems

Limnology is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. Water systems are often categorized as either running (lotic) or standing (lentic).


Denudation is the geological processes in which moving water, ice, wind, and waves erode the Earth's surface, leading to a reduction in elevation and in relief of landforms and landscapes. Although the terms erosion and denudation are used interchangeably, erosion is the transport of soil and rocks from one location to another, and denudation is the sum of processes, including erosion, that result in the lowering of Earth's surface. Endogenous processes such as volcanoes, earthquakes, and tectonic uplift can expose continental crust to the exogenous processes of weathering, erosion, and mass wasting. The effects of denudation have been recorded for millennia but the mechanics behind it have been debated for the past 200 years and have only begun to be understood in the past few decades.

<span class="mw-page-title-main">Sea spray</span> Sea water particles that are formed directly from the ocean

Sea spray are aerosol particles formed from the ocean, mostly by ejection into Earth's atmosphere by bursting bubbles at the air-sea interface. Sea spray contains both organic matter and inorganic salts that form sea salt aerosol (SSA). SSA has the ability to form cloud condensation nuclei (CCN) and remove anthropogenic aerosol pollutants from the atmosphere. Coarse sea spray has also been found to inhibit the development of lightning in storm clouds.

The hyporheic zone is the region of sediment and porous space beneath and alongside a stream bed, where there is mixing of shallow groundwater and surface water. The flow dynamics and behavior in this zone is recognized to be important for surface water/groundwater interactions, as well as fish spawning, among other processes. As an innovative urban water management practice, the hyporheic zone can be designed by engineers and actively managed for improvements in both water quality and riparian habitat.

Carbonate compensation depth (CCD) is the depth in the oceans below which the rate of supply of calcite lags behind the rate of solvation, such that no calcite is preserved. Shells of animals therefore dissolve and carbonate particles may not accumulate in the sediments on the sea floor below this depth. Aragonite compensation depth describes the same behaviour in reference to aragonitic carbonates. Aragonite is more soluble than calcite, so the aragonite compensation depth is generally shallower than the calcite compensation depth.

Ján Veizer is the Distinguished University Professor (emeritus) of Earth Sciences at the University of Ottawa and Institute for Geology, Mineralogy und Geophysics, of Bochum Ruhr University. He held the NSERC/Noranda/CIFAR Industrial Chair in Earth System Isotope and Environmental Geochemistry until 2004. He is an isotope geochemist; his research interests have included the use of chemical and isotopic techniques in determining Earth's climatic and environmental history.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">Carbonate–silicate cycle</span> Geochemical transformation of silicate rocks

The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.

Marine chemistry, also known as ocean chemistry or chemical oceanography, is influenced by plate tectonics and seafloor spreading, turbidity currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. The field of chemical oceanography studies the chemistry of marine environments including the influences of different variables. Marine life has adapted to the chemistries unique to earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

A mouth bar is an element of a deltaic system, which refers to typically mid-channel deposition of the sediment transported by the river channel at the river mouth.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

<span class="mw-page-title-main">Chemical cycling</span>

Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.

Reverse weathering generally refers to the formation of a clay neoformation that utilizes cations and alkalinity in a process unrelated to the weathering of silicates. More specifically reverse weathering refers to the formation of authigenic clay minerals from the reaction of 1) biogenic silica with aqueous cations or cation bearing oxides or 2) cation poor precursor clays with dissolved cations or cation bearing oxides.

<span class="mw-page-title-main">Marine biogeochemical cycles</span>

Marine biogeochemical cycles are biogeochemical cycles that occur within marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. These biogeochemical cycles are the pathways chemical substances and elements move through within the marine environment. In addition, substances and elements can be imported into or exported from the marine environment. These imports and exports can occur as exchanges with the atmosphere above, the ocean floor below, or as runoff from the land.

<span class="mw-page-title-main">Calcium cycle</span>

The calcium cycle is a transfer of calcium between dissolved and solid phases. There is a continuous supply of calcium ions into waterways from rocks, organisms, and soils. Calcium ions are consumed and removed from aqueous environments as they react to form insoluble structures such as calcium carbonate and calcium silicate, which can deposit to form sediments or the exoskeletons of organisms. Calcium ions can also be utilized biologically, as calcium is essential to biological functions such as the production of bones and teeth or cellular function. The calcium cycle is a common thread between terrestrial, marine, geological, and biological processes. Calcium moves through these different media as it cycles throughout the Earth. The marine calcium cycle is affected by changing atmospheric carbon dioxide due to ocean acidification.

<span class="mw-page-title-main">Silica cycle</span> Biogeochemical cycle

The silica cycle is the biogeochemical cycle in which biogenic silica is transported between the Earth's systems. Silicon is considered a bioessential element and is one of the most abundant elements on Earth. The silica cycle has significant overlap with the carbon cycle and plays an important role in the sequestration of carbon through continental weathering, biogenic export and burial as oozes on geologic timescales.

References

  1. Alexandrov, Yulia; Cohen, Hai; Laronne, Jonathan B.; Reid, Ian (2009). "Suspended sediment load, bed load, and dissolved load yields from a semiarid drainage basin: A 15-year study". Water Resources Research. 45 (8): W08408. Bibcode:2009WRR....45.8408A. doi:10.1029/2008wr007314. ISSN   0043-1397. S2CID   129669714.
  2. Grosbois, C.; Négrel, Ph.; Fouillac, C.; Grimaud, D. (2000). "Dissolved load of the Loire River: chemical and isotopic characterization". Chemical Geology. 170 (1–4): 179–201. Bibcode:2000ChGeo.170..179G. doi:10.1016/s0009-2541(99)00247-8. ISSN   0009-2541.
  3. Grove, T. (1972-08-01). "The dissolved and solid load carried by some West African rivers: Senegal, Niger, Benue and Shari". Journal of Hydrology. 16 (4): 277–300. Bibcode:1972JHyd...16..277G. doi:10.1016/0022-1694(72)90133-3. ISSN   0022-1694.
  4. Chetelat, B.; Liu, C.-Q.; Zhao, Z.Q.; Wang, Q.L.; Li, S.L.; Li, J.; Wang, B.L. (2008). "Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering". Geochimica et Cosmochimica Acta. 72 (17): 4254–4277. Bibcode:2008GeCoA..72.4254C. doi:10.1016/j.gca.2008.06.013. ISSN   0016-7037.
  5. Judson, Sheldon; Ritter, Dale F. (1964-08-15). "Rates of regional denudation in the United States". Journal of Geophysical Research. 69 (16): 3395–3401. Bibcode:1964JGR....69.3395J. doi:10.1029/jz069i016p03395. ISSN   0148-0227.
  6. "Hydronomic Zones for Developing Basin Water Conservation Strategies" (PDF). Retrieved 12 July 2015.
  7. Zhang, Shu-Rong; Lu, Xi Xi; Higgitt, David Laurence; Chen, Chen-Tung Arthur; Sun, Hui-Guo; Han, Jing-Tai (2007-03-22). "Water chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic influences". Journal of Geophysical Research. 112 (F1): F01011. Bibcode:2007JGRF..112.1011Z. doi:10.1029/2006jf000493. ISSN   0148-0227.
  8. "Mass transport in krishna river basin (Table-5)" (PDF). Archived from the original (PDF) on 19 June 2015. Retrieved 25 April 2020.
  9. "Ground Water-Making the invisible visible (page 13), The United Nations World Water Development Report 2022" (PDF). Retrieved 5 April 2022.

USGS CMG InfoBank: Suspended and Dissolved Loads