The interaction between erosion and tectonics has been a topic of debate since the early 1990s. While the tectonic effects on surface processes such as erosion have long been recognized (for example, river formation as a result of tectonic uplift), the opposite (erosional effects on tectonic activity) has only recently been addressed. [1] The primary questions surrounding this topic are what types of interactions exist between erosion and tectonics and what are the implications of these interactions. While this is still a matter of debate, one thing is clear, Earth's landscape is a product of two factors: tectonics, which can create topography and maintain relief through surface and rock uplift, and climate, which mediates the erosional processes that wear away upland areas over time. [2] The interaction of these processes can form, modify, or destroy geomorphic features on Earth's surface.
The term tectonics refers to the study of Earth's surface structure and the ways in which it changes over time. Tectonic processes typically occur at plate boundaries which are one of three types: convergent boundaries, divergent boundaries, or transform boundaries. [3] These processes form and modify the topography of the Earth's surface, effectively increasing relief through the mechanisms of isostatic uplift, crustal thickening, and deformation in the form of faulting and folding. Increased elevations, in relation to regional base levels, lead to steeper river channel gradients and an increase in orographically localized precipitation, ultimately resulting in drastically increased erosion rates. The topography, and general relief, of a given area determines the velocity at which surface runoff will flow, ultimately determining the potential erosive power of the runoff. Longer, steeper slopes are more prone to higher rates of erosion during periods of heavy rainfall than shorter, gradually sloping areas. Thus, large mountain ranges, and other areas of high relief, formed through tectonic uplift will have significantly higher rates of erosion. [4] Additionally, tectonics can directly influence erosion rates on a short timescale, as is clear in the case of earthquakes, which can trigger landslides and weaken surrounding rock through seismic disturbances.
While tectonic uplift in any case will lead to some form of increased elevation, thus higher rates of erosion, a primary focus is set on isostatic uplift as it provides a fundamental connection between the causes and effects of erosional-tectonic interactions.
Understanding the principle of isostasy is a key element to understanding the interactions and feedbacks shared between erosion and tectonics. The principle of isostasy states that when free to move vertically, lithosphere floats at an appropriate level in the asthenosphere so that the pressure at a depth of compensation in the asthenosphere well below the base of the lithosphere is the same. [3] Isostatic uplift is both a cause and an effect of erosion. When deformation occurs in the form of crustal thickening an isostatic response is induced causing the thickened crust to sink, and surrounding thinner crust to uplift. The resulting surface uplift leads to enhanced elevations, which in turn induces erosion. [5] Alternatively, when a large amount of material is eroded away from the Earth's surface uplift occurs in order to maintain isostatic equilibrium. Because of isostasy, high erosion rates over significant horizontal areas can effectively suck up material from the lower crust and/or upper mantle. This process is known as isostatic rebound and is analogous to Earth's response following the removal of large glacial ice sheets. [6]
Isostatic uplift and corresponding erosion are responsible for the formation of regional-scale geologic features as well as localized structures. Two such examples include:
Channel flow describes the process through which hot, viscous crustal material flows horizontally between the upper crust and lithospheric mantle, and is eventually pushed to the surface. This model aims to explain features common to metamorphic hinterlands of some collisional orogens, most notably the Himalaya–Tibetan Plateau system. In mountainous areas with heavy rainfall (thus, high erosion rates) deeply incising rivers will form. As these rivers wear away the Earth's surface two things occur: (1) pressure is reduced on the underlying rocks effectively making them weaker and (2) the underlying material moves closer to the surface. This reduction of crustal strength, coupled with the erosional exhumation, allows for the diversion of the underlying channel flow toward Earth's surface. [9] [10]
The term erosion refers to the group of natural processes, including weathering, dissolution, abrasion, corrosion, and transportation, by which material is worn away from Earth's surface to be transported and deposited in other locations.
The feedback of erosion on tectonics is given by the transportation of surface, or near-surface, mass (rock, soil, sand, regolith, etc.) to a new location. [1] This redistribution of material can have profound effects on the state of gravitational stresses in the area, dependent on the magnitude of mass transported. Because tectonic processes are highly dependent on the current state of gravitational stresses, redistribution of surface material can lead to tectonic activity. [1] While erosion in all of its forms, by definition, wears away material from the Earth's surface, the process of mass wasting as a product of deep fluvial incision has the highest tectonic implications.
Mass wasting is the geomorphic process by which surface material move downslope typically as a mass, largely under the force of gravity [11] As rivers flow down steeply sloping mountains, deep channel incision occurs as the river's flow wears away the underlying rock. Large channel incision progressively decreases the amount of gravitational force needed for a slope failure event to occur, eventually resulting in mass wasting. [1] Removal of large amounts of surface mass in this fashion will induce an isostatic response resulting in uplift until equilibrium is reached.
Recent studies have shown that erosional and tectonic processes have an effect on the structural evolution of some geologic features, most notably orogenic wedges. Highly useful sand box models, in which horizontal layers of sand are slowly pressed against a backstop, have shown that the geometries, structures, and kinematics of orogenic wedge formation with and without erosion and sedimentation are significantly different. [12] [13] Numerical models also show that the evolution of orogens, their final tectonic structure, and the potential development of a high plateau, all are sensitive to the long term climate over the mountains, for example, the concentration of precipitation in one side of the orogen due to orographic lift under a dominant wind direction. [14]
Erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.
A mountain range or hill range is a series of mountains or hills arranged in a line and connected by high ground. A mountain system or mountain belt is a group of mountain ranges with similarity in form, structure, and alignment that have arisen from the same cause, usually an orogeny. Mountain ranges are formed by a variety of geological processes, but most of the significant ones on Earth are the result of plate tectonics. Mountain ranges are also found on many planetary mass objects in the Solar System and are likely a feature of most terrestrial planets.
Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.
Geomorphology is the scientific study of the origin and evolution of topographic and bathymetric features generated by physical, chemical or biological processes operating at or near Earth's surface. Geomorphologists seek to understand why landscapes look the way they do, to understand landform and terrain history and dynamics and to predict changes through a combination of field observations, physical experiments and numerical modeling. Geomorphologists work within disciplines such as physical geography, geology, geodesy, engineering geology, archaeology, climatology, and geotechnical engineering. This broad base of interests contributes to many research styles and interests within the field.
Terrain or relief involves the vertical and horizontal dimensions of land surface. The term bathymetry is used to describe underwater relief, while hypsometry studies terrain relative to sea level. The Latin word terra means "earth."
Post-glacial rebound is the rise of land masses after the removal of the huge weight of ice sheets during the last glacial period, which had caused isostatic depression. Post-glacial rebound and isostatic depression are phases of glacial isostasy, the deformation of the Earth's crust in response to changes in ice mass distribution. The direct raising effects of post-glacial rebound are readily apparent in parts of Northern Eurasia, Northern America, Patagonia, and Antarctica. However, through the processes of ocean siphoning and continental levering, the effects of post-glacial rebound on sea level are felt globally far from the locations of current and former ice sheets.
Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust. Folding, faulting, volcanic activity, igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building. The formation of mountains is not necessarily related to the geological structures found on it.
In structural geology, an anticline is a type of fold that is an arch-like shape and has its oldest beds at its core, whereas a syncline is the inverse of an anticline. A typical anticline is convex up in which the hinge or crest is the location where the curvature is greatest, and the limbs are the sides of the fold that dip away from the hinge. Anticlines can be recognized and differentiated from antiforms by a sequence of rock layers that become progressively older toward the center of the fold. Therefore, if age relationships between various rock strata are unknown, the term antiform should be used.
Tectonic uplift is the geologic uplift of Earth's surface that is attributed to plate tectonics. While isostatic response is important, an increase in the mean elevation of a region can only occur in response to tectonic processes of crustal thickening, changes in the density distribution of the crust and underlying mantle, and flexural support due to the bending of rigid lithosphere.
A geosyncline is an obsolete geological concept to explain orogens, which was developed in the late 19th and early 20th centuries, before the theory of plate tectonics was envisaged. A geosyncline was described as a giant downward fold in the Earth's crust, with associated upward folds called geanticlines, that preceded the climax phase of orogenic deformation.
The Petermann Orogeny was an Australian intracontinental event that affected basement rocks of the northern Musgrave Province and Ediacaran (Proterozoic) sediments of the (now) southern Amadeus Basin between ~550-535 Ma. The remains are seen today in the Petermann Ranges.
In geology, epeirogenic movement is upheavals or depressions of land exhibiting long wavelengths and little folding apart from broad undulations. The broad central parts of continents are called cratons, and are subject to epeirogeny. The movement may be one of subsidence toward, or of uplift from, the center of Earth. The movement is caused by a set of forces acting along an Earth radius, such as those contributing to isostasy and faulting in the lithosphere.
In geology and geophysics, thermal subsidence is a mechanism of subsidence in which conductive cooling of the mantle thickens the lithosphere and causes it to decrease in elevation. This is because of thermal expansion: as mantle material cools and becomes part of the mechanically rigid lithosphere, it becomes denser than the surrounding material. Additional material added to the lithosphere thickens it and further causes a buoyant decrease in the elevation of the lithosphere. This creates accommodation space into which sediments can deposit, forming a sedimentary basin.
A river anticline is a geologic structure that is formed by the focused uplift of rock caused by high erosion rates from large rivers relative to the surrounding areas. An anticline is a fold that is concave down, whose limbs are dipping away from its axis, and whose oldest units are in the middle of the fold. These features form in a number of structural settings. In the case of river anticlines, they form due to high erosion rates, usually in orogenic settings. In a mountain building setting, like that of the Himalaya or the Andes, erosion rates are high and the river anticline's fold axis will trend parallel to a major river. When river anticlines form, they have a zone of uplift between 50-80 kilometers wide along the rivers that form them.
Thick-skinned deformation is a geological term which refers to crustal shortening that involves basement rocks and deep-seated faults as opposed to only the upper units of cover rocks above the basement which is known as thin-skinned deformation. While thin-skinned deformation is common in many different localities, thick-skinned deformation requires much more strain to occur and is a rarer type of deformation.
In geology, the term exhumation refers to the process by which a parcel of rock, approaches Earth's surface.
The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.
In geology, orogenic collapse is the thinning and lateral spread of thickened crust. It is a broad term referring to processes which distribute material from regions of high gravitational potential energy to regions of low gravitational potential energy. Orogenic collapse can begin at any point during an orogeny due to overthickening of the crust. Post-orogenic collapse and post-orogenic extension refer to processes which take place once tectonic forces have been released, and represent a key phase of the Wilson Cycle, between continental collision and rifting.
The geology of Sicily records the collision of the Eurasian and the African plates during westward-dipping subduction of the African slab since late Oligocene. Major tectonic units are the Hyblean foreland, the Gela foredeep, the Apenninic-Maghrebian orogen, and the Calabrian Arc. The orogen represents a fold-thrust belt that folds Mesozoic carbonates, while a major volcanic unit is found in an eastern portion of the island. The collision of Africa and Eurasia is a retreating subduction system, such that the descending Africa is falling away from Eurasia, and Eurasia extends and fills the space as the African plate falls into the mantle, resulting in volcanic activity in Sicily and the formation of Tyrrhenian slab to the north.
The geology of Himachal Pradesh is dominated by Precambrian rocks that were assembled and deformed during the India-Asia collision and the subsequent Himalayan orogeny. The Northern Indian State Himachal Pradesh is located in the Western Himalaya. It has a rugged terrain, with elevation ranging from 320m to 6975m. Rock materials in the region are largely from the Indian craton, and their ages range from the Paleoproterozoic to the present day. It is generally agreed that the Indian craton collided with Asia 50-60 million years ago (Ma). Rock sequences were thrust and folded immensely during the collision. The area has also been shaped by focused orographic precipitation, glaciation and rapid erosion.