Effluent sewer

Last updated
Schematic of a solids free sewer: Small-diameter pipes transport wastewater which has been pre-treated in an interceptor tank, often erroneously referred to as a septic tank, or similar vessel. Solids Free Sewer diagram.svg
Schematic of a solids free sewer: Small-diameter pipes transport wastewater which has been pre-treated in an interceptor tank, often erroneously referred to as a septic tank, or similar vessel.

Effluent sewer systems, also called septic tank effluent gravity (STEG), solids-free sewer (SFS), or septic tank effluent drainage (STED) systems, have septic tanks that collect sewage from residences and businesses, and the liquid fraction of sewage that comes out of the tank is conveyed to a downstream receiving body such as either a centralized sewage treatment plant or a distributed treatment system for further treatment or disposal away from the community generating the sewage. Most of the solids are removed by the interceptor tanks, so the treatment plant can be much smaller than a typical plant and any pumping for the supernatant can be simpler without grinders (sometimes water pumps are sufficient).

Contents

An alternative effluent sewer which is similar to the STEG system is the STEP system. Because of the vast reduction of solid wastes and the capture of fats, oils and grease (FOG) within the interceptor tank, a pumping system can be used to move the wastewater under pressure rather than a gravity driven conveyance system.

Design considerations

Effluent pumping sewers have small diameter pipes that follow the contour of the land and are only buried a metre or two underground. While an effluent sewer can use gravity to move waste, the ability to move waste with a pressure system can be a big advantage in places where a gravity system is impractical. Compared to conventional sewer systems, effluent sewer systems can be installed at a shallow depth and do not require a minimum wastewater flow or slope to function. [1]

Effluent sewer systems, as well as all sewer systems, can use two methods to transport wastewater to a treatment facility. These methods are gravity and pumping, also called pressure systems. Gravity systems use pipes that are laid on a slight downhill slope to transport wastewater. Effluent pumping systems have pipes that are buried at a constant depth, such as a metre and a half, and rely on pumping stations that create pressure to move the waste to a treatment facility. An effluent sewer that uses gravity may be called a septic tank effluent gravity (STEG) system, while a pumping system may be called a septic tank effluent pumping (STEP) system. It is also possible to have a hybrid system that uses gravity and pumping. Gravity and pumping effluent sewer systems both have advantages and disadvantages. The best type of system to use depends on the area it will be serving. Factors such as population size, topography, groundwater level, as well as locations for pumping stations and the treatment plant, must be taken into account. STEG systems should not be confused with traditional sewer systems that use gravity to transport untreated sewage to a wastewater treatment plant, which are typically referred to as gravity sewer systems.

Comparison with other systems

Conventional gravity sewers

Effluent sewer systems are a much less common sewage disposal method than gravity sewer systems that use gravity, as well as pumping where needed, to send raw sewage and other wastewater straight from consumers to a sewage treatment plant. There are two main types of gravity sewers, sanitary and combined. Sanitary sewers only treat the wastewater from homes and business. Combined sewers have storm drains that are connected to the sewerage. In areas with high rainfall, this results in an enormous additional amount of wastewater that has to be treated. Combined sewers have higher operating costs due to the larger volume of wastewater that has to be treated, and they may require larger treatment plants, as well. In addition, when it rains very hard, the treatment plant will not be able to keep up, which can result in untreated wastewater being dumped into the plant's outfall, which may be a river, lake or ocean. When this occurs, the operator of the sewer is usually fined by one or more of the government bodies that oversee the body of water that the wastewater was dumped into. To prevent this, some cities have tanks, pits or ponds to store the excess wastewater until it can be properly treated. To prevent groundwater contamination, the pits and ponds should have liners if sewage has already been combined with the storm runoff.

Septic tanks

Effluent sewers also currently serve fewer people than septic systems, which also use septic tanks, but simply dispose of the effluent by draining it into a leach field. About one quarter of United States homes dispose of their wastewater with septic tanks. However, effluent sewers are being looked at as a sewage treatment solution in areas where gravity sewer systems are not well-suited or when the high capital cost to build a gravity system is prohibitive. Areas that are less than ideal for gravity systems include areas that are large, but extremely flat and areas that require long-distance pumping, such as where homes are widely spread out or when several small villages or towns connect their sewage systems so that a centralized plant can be built.

Another problem area is a place where there are many homes or businesses at or near the lowest elevation in the area, such as sea level for a coastal city. Typically, waste is pumped uphill under low pressure to the main sewer line in such situations, either after it has been through a septic tank or after it has been ground up into a slurry by a grinder. Grinding can be done when the waste of many homes or businesses is combined or smaller grinders can be installed at each home or business. A disadvantage of using grinders is that they require electricity, and a disadvantage of using septic tanks is that they require solid waste buildup to be removed every one to three years, depending on the size of the tank and the number of people using the system.

Septic tanks also have a higher capital cost if they are being installed for new homes or if the existing septic tanks must be replaced. If there is a suitable septic tank in place, pumping the effluent from the tank is the lowest cost option for initial costs. Whether the septic tank is the lowest cost option over time depends on the cost of electricity in the area, how often the tank must be emptied and how much it costs to have the solids pumped out of the tank.

See also

Related Research Articles

<span class="mw-page-title-main">Sewerage</span> Infrastructure that conveys sewage or surface runoff using sewers

Sewerage is the infrastructure that conveys sewage or surface runoff using sewers. It encompasses components such as receiving drains, manholes, pumping stations, storm overflows, and screening chambers of the combined sewer or sanitary sewer. Sewerage ends at the entry to a sewage treatment plant or at the point of discharge into the environment. It is the system of pipes, chambers, manholes, etc. that conveys the sewage or storm water.

<span class="mw-page-title-main">Septic tank</span> Method for basic wastewater treatment (on-site)

A septic tank is an underground chamber made of concrete, fiberglass, or plastic through which domestic wastewater (sewage) flows for basic sewage treatment. Settling and anaerobic digestion processes reduce solids and organics, but the treatment efficiency is only moderate. Septic tank systems are a type of simple onsite sewage facility. They can be used in areas that are not connected to a sewerage system, such as rural areas. The treated liquid effluent is commonly disposed in a septic drain field, which provides further treatment. Nonetheless, groundwater pollution may occur and is a problem.

<span class="mw-page-title-main">Sanitary sewer</span> Underground pipe for transporting sewage

A sanitary sewer is an underground pipe or tunnel system for transporting sewage from houses and commercial buildings to a sewage treatment plant or disposal. Sanitary sewers are a type of gravity sewer and are part of an overall system called a "sewage system" or sewerage. Sanitary sewers serving industrial areas may also carry industrial wastewater. In municipalities served by sanitary sewers, separate storm drains may convey surface runoff directly to surface waters. An advantage of sanitary sewer systems is that they avoid combined sewer overflows. Sanitary sewers are typically much smaller in diameter than combined sewers which also transport urban runoff. Backups of raw sewage can occur if excessive stormwater inflow or groundwater infiltration occurs due to leaking joints, defective pipes etc. in aging infrastructure.

<span class="mw-page-title-main">Wastewater treatment</span> Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process which removes and eliminates contaminants from wastewater and converts this into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes. The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater, the treatment plant is called a Sewage Treatment. For industrial wastewater, treatment either takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant. Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.

<span class="mw-page-title-main">Activated sludge</span> Wastewater treatment process using aeration and a biological floc

The activated sludgeprocess is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air and microorganisms to biologically oxidize organic pollutants, producing a waste sludge containing the oxidized material.

Onsite sewage facilities (OSSF), also called septic systems, are wastewater systems designed to treat and dispose of effluent on the same property that produces the wastewater, in areas not served by public sewage infrastructure.

A grinder pump is a wastewater conveyance device. Waste from water-using household appliances flows through the home’s pipes into the grinder pump’s holding tank. Once the wastewater inside the tank reaches a specific level, the pump will turn on, grind the waste into a fine slurry, and pump it to the central sewer system or septic tank.

<span class="mw-page-title-main">Combined sewer</span> Sewage collection system of pipes and tunnels designed to also collect surface runoff

A combined sewer is a type of gravity sewer with a system of pipes, tunnels, pump stations etc. to transport sewage and urban runoff together to a sewage treatment plant or disposal site. This means that during rain events, the sewage gets diluted, resulting in higher flowrates at the treatment site. Uncontaminated stormwater simply dilutes sewage, but runoff may dissolve or suspend virtually anything it contacts on roofs, streets, and storage yards. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Combined sewers may also receive dry weather drainage from landscape irrigation, construction dewatering, and washing buildings and sidewalks.

<span class="mw-page-title-main">Sewage farm</span>

Sewage farms use sewage for irrigation and fertilizing agricultural land. The practice is common in warm, arid climates where irrigation is valuable while sources of fresh water are scarce. Suspended solids may be converted to humus by microbes and bacteria in order to supply nitrogen, phosphorus and other plant nutrients for crop growth. Many industrialized nations use conventional sewage treatment plants nowadays instead of sewage farms. These reduce vector and odor problems; but sewage farming remains a low-cost option for some developing countries. Sewage farming should not be confused with sewage disposal through infiltration basins or subsurface drains.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

An aerobic treatment system (ATS), often called an aerobic septic system, is a small scale sewage treatment system similar to a septic tank system, but which uses an aerobic process for digestion rather than just the anaerobic process used in septic systems. These systems are commonly found in rural areas where public sewers are not available, and may be used for a single residence or for a small group of homes.

<span class="mw-page-title-main">Vacuum sewer</span> Method of transporting sewage from its source to a sewage treatment plant

A vacuum sewer or pneumatic sewer system is a method of transporting sewage from its source to a sewage treatment plant. It maintains a partial vacuum, with an air pressure below atmospheric pressure inside the pipe network and vacuum station collection vessel. Valves open and reseal automatically when the system is used, so differential pressure can be maintained without expending much energy pumping. A single central vacuum station can collect the wastewater of several thousand individual homes, depending on terrain and the local situation.

<span class="mw-page-title-main">Grease trap</span> Trap designed to intercept most greases and solids before they enter a wastewater disposal system

A grease trap is a plumbing device designed to intercept most greases and solids before they enter a wastewater disposal system. Common wastewater contains small amounts of oils which enter into septic tanks and treatment facilities to form a floating scum layer. This scum layer is very slowly digested and broken down by microorganisms in the anaerobic digestion process. Large amounts of oil from food preparation in restaurants can overwhelm a septic tank or treatment facility, causing the release of untreated sewage into the environment. High-viscosity fats and cooking grease such as lard solidify when cooled, and can combine with other disposed solids to block drain pipes.

A mound system is an engineered drain field for treating wastewater in places with limited access to multi-stage wastewater treatment systems. Mound systems are an alternative to the traditional rural septic system drain field. They are used in areas where septic systems are prone to failure from extremely permeable or impermeable soils, soil with the shallow cover over porous bedrock, and terrain that features a high water table.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

<span class="mw-page-title-main">Vacuum truck</span> Tank truck with a pump designed to load material through suction lines

A vacuum truck, vacuum tanker, vactor truck, vactor, vac-con truck, vac-con is a tank truck that has a pump and a tank. The pump is designed to pneumatically suck liquids, sludges, slurries, or the like from a location into the tank of the truck. The objective is to enable transport of the liquid material via road to another location. Vacuum trucks transport the collected material to a treatment or disposal site, for example a sewage treatment plant.

<span class="mw-page-title-main">Fecal sludge management</span> Collection, transport, and treatment of fecal sludge from onsite sanitation systems

Fecal sludge management (FSM) is the storage, collection, transport, treatment and safe end use or disposal of fecal sludge. Together, the collection, transport, treatment and end use of fecal sludge constitute the "value chain" or "service chain" of fecal sludge management. Fecal sludge is defined very broadly as what accumulates in onsite sanitation systems and specifically is not transported through a sewer. It is composed of human excreta, but also anything else that may go into an onsite containment technology, such as flushwater, cleansing materials, menstrual hygiene products, grey water, and solid waste. Fecal sludge that is removed from septic tanks is called septage.

<span class="mw-page-title-main">Gravity sewer</span> Conduit which removes wastewater by use of gravity

A gravity sewer is a conduit utilizing the energy resulting from a difference in elevation to remove unwanted water. The term sewer implies removal of sewage or surface runoff rather than water intended for use; and the term gravity excludes water movement induced through force mains or vacuum sewers. Most sewers are gravity sewers because gravity offers reliable water movement with no energy costs wherever grades are favorable. Gravity sewers may drain to sumps where pumping is required to either force sewage to a distant location or lift sewage to a higher elevation for entry into another gravity sewer, and lift stations are often required to lift sewage into sewage treatment plants. Gravity sewers can be either sanitary sewers, combined sewers, storm sewers or effluent sewers.

A pressure sewer provides a method of discharging sewage from properties into a conventional gravity sewer or directly to a sewage treatment plant. Pressure sewers are typically used where properties are located below the level of the nearest gravity sewer or are located on difficult terrain.

References

  1. 1 2 Tilley, E.; Ulrich, L.; Lüthi, C.; Reymond, Ph.; Zurbrügg, C. (2014). Compendium of Sanitation Systems and Technologies - (2nd Revised ed.). Swiss Federal Institute of Aquatic Science and Technology (Eawag), Duebendorf, Switzerland. ISBN   978-3-906484-57-0.