Injection well

Last updated
Deep injection well for disposal of hazardous, industrial and municipal wastewater; a "Class I" well under USEPA regulations. Deep injection well.jpg
Deep injection well for disposal of hazardous, industrial and municipal wastewater; a "Class I" well under USEPA regulations.

An injection well is a device that places fluid deep underground into porous rock formations, such as sandstone or limestone, or into or below the shallow soil layer. The fluid may be water, wastewater, brine (salt water), or water mixed with industrial chemical waste. [1]

Contents

Definition

The U.S. Environmental Protection Agency (EPA) defines an injection well as "a bored, drilled, or driven shaft, or a dug hole that is deeper than it is wide, or an improved sinkhole, or a subsurface fluid distribution system". Well construction depends on the injection fluid injected and depth of the injection zone. Deep wells that are designed to inject hazardous wastes or carbon dioxide deep below the Earth's surface have multiple layers of protective casing and cement, whereas shallow wells injecting non-hazardous fluids into or above drinking water sources are more simply constructed. [1]

Applications

Injection wells are used for many purposes.

Waste disposal

Treated wastewater can be injected into the ground between impermeable layers of rocks to avoid polluting surface waters. Injection wells are usually constructed of solid walled pipe to a deep elevation in order to prevent injectate from mixing with the surrounding environment. [1] Injection wells utilize the earth as a filter to treat the wastewater before it reaches the aquifer. This method of wastewater disposal also serves to spread the injectate over a wide area, further decreasing environmental impacts.[ citation needed ]

In the United States, there are about 800 deep injection waste disposal wells used by industries such as chemical manufacturers, petroleum refineries, food producers and municipal wastewater plants. [2] Most produced water generated by oil and gas extraction wells in the US is also disposed in deep injection wells. [3]

Critics of wastewater injection wells cite concerns about potential groundwater contamination. It is argued that the impacts of some injected wastes in groundwater is not fully understood, and that the science and regulatory agencies have not kept up with the rapid expansion of disposal practices in US, where there are over 680,000 wells as of 2012. [4]

Alternatives to injection wells include direct discharge of treated wastewater to receiving waters, conditioning of oil drilling and fracking produced water for reuse, utilization of treated water for irrigation or livestock watering, or processing of water at industrial wastewater treatment plants. [5] Direct discharge does not disperse the water over a wide area; the environmental impact is focused on a particular segment of a river and its downstream reaches or on a coastal water body. Extensive irrigation is not typical in areas where the produced water tends to be salty, [5] and this practice is often prohibitively expensive and requires ongoing maintenance and large electricity usage. [6]

Since the early 1990s, Maui County, Hawaii has been engaged in a struggle over the 3 to 5 million gallons per day of wastewater that it injects below the Lahaina Wastewater Reclamation Facility, over the claim that the water was emerging in seeps that were causing algae blooms and other environmental damage. After some twenty years, it was sued by environmental groups after multiple studies showed that more than half the injectate was appearing in nearby coastal waters. The judge in the suit rejected the County's arguments, potentially subjecting it to millions of dollars in federal fines. A 2001 consent decree required the county to obtain a water quality certification from the Hawaii Department of Health, which it failed to do until 2010, after the suit was filed. [7] The case proceeded through the United States Court of Appeals for the Ninth Circuit and subsequently to the Supreme Court of the United States. In 2020 the Court ruled in County of Maui v. Hawaii Wildlife Fund that injection wells may be the "functional equivalent of a direct discharge" under the Clean Water Act, and instructed the EPA to work with the courts to establish regulations when these types of wells should require permits. [8]

Oil and gas production

Another use of injection wells is in natural gas and petroleum production. Steam, carbon dioxide, water, and other substances can be injected into an oil-producing unit in order to maintain reservoir pressure, heat the oil or lower its viscosity, allowing it to flow to a producing well nearby. [9]

Waste site remediation

Yet another use for injection wells is in environmental remediation, for cleanup of either soil or groundwater contamination. Injection wells can insert clean water into an aquifer, thereby changing the direction and speed of groundwater flow, perhaps towards extraction wells downgradient, which could then more speedily and efficiently remove the contaminated groundwater. Injection wells can also be used in cleanup of soil contamination, for example by use of an ozonation system. Complex hydrocarbons and other contaminants trapped in soil and otherwise inaccessible can be broken down by ozone, a highly reactive gas, often with greater cost-effectiveness than could be had by digging out the affected area. Such systems are particularly useful in built-up urban environments where digging may be impractical due to overlying buildings. [10]

Aquifer recharge

Recently the option of refilling natural aquifers with injection or percolation has become more important, particularly in the driest region of the world, the MENA region (Middle East and North Africa). [11]

Surface runoff can also be recharged into dry wells, or simply barren wells that have been modified to functions as cisterns. [12] These hybrid stormwater management systems, called recharge wells, have the advantage of aquifer recharge and instantaneous supply of potable water at the same time. They can utilize existing infrastructure and require very little effort for the modification and operation. The activation can be as simple as inserting a polymer cover (foil) into the well shaft. Vertical pipes for conduction of the overflow to the bottom can enhance performance. The area around the well acts as funnel. If this area is maintained well the water will require little purification before it enters the cistern. [13]

Geothermal energy

Injection wells are used to tap geothermal energy in hot, porous rock formations below the surface by injecting fluids into the ground, which is heated in the ground, then extracted from adjacent wells as fluid, steam, or a combination of both. The heated steam and fluid can then be utilized to generate electricity or directly for geothermal heating. [14] [15] [16]

Regulatory requirements

In the United States, injection well activity is regulated by EPA and state governments under the Safe Drinking Water Act (SDWA). [1] The “State primary enforcement responsibility” section of the SDWA provides for States to submit their proposed UIC program to the EPA to request State assumption of primary enforcement responsibility. [17] Thirty-four states have been granted UIC primacy enforcement authority for Class I, II, III, IV and V wells. [18] For states without an approved UIC program, the EPA administrator prescribes a program to apply. [19] EPA has issued Underground Injection Control (UIC) regulations in order to protect drinking water sources. [20] [21]

EPA regulations define six classes of injection wells. Class I wells are used for the injection of municipal and industrial wastes beneath underground sources of drinking water. Class II wells are used for the injection of fluids associated with oil and gas production, including waste from hydraulic fracturing. Class III wells are used for the injection of fluids used in mineral solution mining beneath underground sources of drinking water. Class IV wells, like Class I wells, were used for the injection of hazardous wastes but inject waste into or above underground sources of drinking water instead of below. EPA banned the use of Class IV wells in 1984. [22] Class V wells are those used for all non-hazardous injections that are not covered by Classes I through IV. Examples of Class V wells include stormwater drainage wells and septic system leach fields. Finally, Class VI wells are used for the injection of carbon dioxide for sequestration, or long term storage. [1] Since the introduction of Class VI in 2010, only two Class VI wells have been constructed as of 2022, both at the same Illinois facility; four other approved projects did not proceed to construction. [23]

Injection-induced earthquakes

Cumulative number of earthquakes in the central U.S. The red cluster at the center of the map shows an area near Oklahoma which experienced the largest increase in activity since 2009. Cumulative induced seismicity.png
Cumulative number of earthquakes in the central U.S. The red cluster at the center of the map shows an area near Oklahoma which experienced the largest increase in activity since 2009.

A July 2013 study by US Geological Survey scientist William Ellsworth links earthquakes to wastewater injection sites. In the four years from 2010-2013 the number of earthquakes of magnitude 3.0 or greater in the central and eastern United States increased dramatically. After decades of a steady earthquake rate (average of 21 events/year), activity increased starting in 2001 and peaked at 188 earthquakes in 2011, including a record-breaking 5.7-magnitude earthquake near Prague, Oklahoma which was the strongest earthquake ever recorded in Oklahoma. USGS scientists have found that at some locations the increase in seismicity coincides with the injection of wastewater in deep disposal wells. Injection-induced earthquakes are thought to be caused by pressure changes due to excess fluid injected deep below the surface and are being dubbed “man-made” earthquakes. [24] On September 3, 2016, a 5.8-magnitude earthquake occurred near Pawnee, Oklahoma, followed by nine aftershocks between magnitudes 2.6 and 3.6 within three and one-half hours. The earthquake broke the previous record set five years earlier. Tremors were felt as far away as Memphis, Tennessee, and Gilbert, Arizona. Mary Fallin, the Oklahoma governor, declared a local emergency and shutdown orders for local disposal wells were ordered by the Oklahoma Corporation Commission. [25] [26] Results of ongoing multi-year research on induced earthquakes by the United States Geological Survey (USGS) published in 2015 suggested that most of the significant earthquakes in Oklahoma, such as the 1952 magnitude 5.5 El Reno earthquake may have been induced by deep injection of waste water by the oil industry. [27]

Notes

  1. 1 2 3 4 5 6 "General Information About Injection Wells". Washington, DC: U.S. Environmental Protection Agency (EPA). 2020-04-20.
  2. "Class I Industrial and Municipal Waste Disposal Wells". Underground Injection Control. EPA. 2016-09-06.
  3. Summary of Input on Oil and Gas Extraction Wastewater Management Practices Under the Clean Water Act (Report). EPA. May 2020. p. 2. EPA 821-S-19-001.
  4. Lustgarten, Abrahm (2012-06-21). "Injection Wells: The Poison Beneath Us". ProPublica. New York.
  5. 1 2 Erickson, Britt E. (2019-11-17). "Wastewater from fracking: Growing disposal challenge or untapped resource?". Chemical & Engineering News. Vol. 97, no. 45.
  6. Martin, DL; Dorn, TW; Melvin, SR; Corr, AJ; Kranz, WL (February 2011). "Evaluation Energy Use for Pumping Irrigation Water" (PDF). Proceedings of the 23rd Annual Central Plains Irrigation Conference. Burlington, CO.
  7. "Federal Judge Rejects Maui County Arguments on Lahaina Plant Violations". Civil Beat. 9 July 2014. Retrieved 2014-07-22.
  8. Stohr, Greg (April 23, 2020). "Supreme Court Gives Environmentalists Partial Win on Water Law". Bloomberg News.
  9. EPA. "Class II Oil and Gas Related Injection Wells." Updated 2015-10-08.
  10. EPA. New York, NY (2003-04-17). "EPA Announces Cleanup Plan for Contaminated Soil and Ground Water at Central Islip Superfund Site." Example of use of ozonation wells for remediation in situ.
  11. H2O magazine (2010-10-16). "Strategic reserve" by Anoop K Menon
  12. H2O magazine (2011-05-03). "Recharging dry wells." Archived 2020-07-08 at the Wayback Machine by Nicol-André Berdellé
  13. Prototype-Creation (2011-04-20). "Recharge wells and ASR." by Nicol-André Berdellé
  14. "Geothermal Technologies Program: Tapping the Earth's energy to meet our heat and power needs" (PDF). U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. April 2004. Retrieved 2 June 2018.
  15. Fitch, David; Matlick, Skip (2008). "Gold, silver and Other Metals in scale— Puna Geothermal Venture, Hawaii" (PDF). GRC Transactions. 32: 385–388. Archived from the original (PDF) on 1 November 2016. Retrieved 2 June 2018.
  16. Gill, Andrea T. (2004). "Prospective Direct Use Enterprises in Kapoho, Hawaii" (PDF). Hawaii Dept. of Business, Economic Development and Tourism, Strategic Industries Division. Retrieved 2 June 2018.
  17. 42 U.S.C.   § 300h-1(b)
  18. "Primary Enforcement Authority for the Underground Injection Control Program". EPA. 2019-04-15.
  19. 42 U.S.C.   § 300h-1(c)
  20. EPA. "Underground Injection Control Regulations." Updated 2015-10-05.
  21. EPA. (July 2001). "Technical Program Overview: Underground Injection Control Regulations." Document no. EPA 816-R-02-025.
  22. "Class IV Shallow Hazardous and Radioactive Injection Wells". Underground Injection Control. EPA. 2016-09-06.
  23. Philip K. Lau and Nadav C. Klugman (2022-06-22). ""CARBON CAPTURE, UTILIZATION, AND STORAGE: CLASS VI WELLS AND US STATE PRIMACY",".
  24. USGS. "Man-Made Earthquakes Update" Archived 2014-03-29 at the Wayback Machine Updated January 17, 2014.
  25. Record tying Oklahoma earthquake felt as far away as Arizona, Associated Press , Ken Miller, September 3, 2016. Retrieved 4 September 2016.
  26. USGS calls for shut down of wells, governor declares emergency in wake of 5.6 quake in Oklahoma, Enid News & Eagle , Sally Asher & Violet Hassler, September 3, 2016. Retrieved 4 September 2016.
  27. Hough, Susan E.; Page, Morgan (October 20, 2015). "A Century of Induced Earthquakes in Oklahoma?". U.S. Geological Survey. Retrieved November 8, 2015. Several lines of evidence further suggest that most of the significant earthquakes in Oklahoma during the 20th century may also have been induced by oil production activities. Deep injection of waste water, now recognized to potentially induce earthquakes, in fact began in the state in the 1930s.

Related Research Articles

<span class="mw-page-title-main">Industrial waste</span> Waste produced by industrial activity or manufacturing processes

Industrial waste is the waste produced by industrial activity which includes any material that is rendered useless during a manufacturing process such as that of factories, mills, and mining operations. Types of industrial waste include dirt and gravel, masonry and concrete, scrap metal, oil, solvents, chemicals, scrap lumber, even vegetable matter from restaurants. Industrial waste may be solid, semi-solid or liquid in form. It may be hazardous waste or non-hazardous waste. Industrial waste may pollute the nearby soil or adjacent water bodies, and can contaminate groundwater, lakes, streams, rivers or coastal waters. Industrial waste is often mixed into municipal waste, making accurate assessments difficult. An estimate for the US goes as high as 7.6 billion tons of industrial waste produced annually, as of 2017. Most countries have enacted legislation to deal with the problem of industrial waste, but strictness and compliance regimes vary. Enforcement is always an issue.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

<span class="mw-page-title-main">Rocky Mountain Arsenal</span> Former U.S. Army chemical weapons manufacturing site

The Rocky Mountain Arsenal was a United States chemical weapons manufacturing center located in the Denver Metropolitan Area in Commerce City, Colorado. The site was completed December 1942, operated by the United States Army throughout the later 20th century and was controversial among local residents until its closure in 1992.

Induced seismicity is typically earthquakes and tremors that are caused by human activity that alters the stresses and strains on Earth's crust. Most induced seismicity is of a low magnitude. A few sites regularly have larger quakes, such as The Geysers geothermal plant in California which averaged two M4 events and 15 M3 events every year from 2004 to 2009. The Human-Induced Earthquake Database (HiQuake) documents all reported cases of induced seismicity proposed on scientific grounds and is the most complete compilation of its kind.

<span class="mw-page-title-main">Safe Drinking Water Act</span> Principal federal law in the United States intended to ensure safe drinking water for the public

The Safe Drinking Water Act (SDWA) is the principal federal law in the United States intended to ensure safe drinking water for the public. Pursuant to the act, the Environmental Protection Agency (EPA) is required to set standards for drinking water quality and oversee all states, localities, and water suppliers that implement the standards.

Title 40 is a part of the United States Code of Federal Regulations. Title 40 arranges mainly environmental regulations that were promulgated by the US Environmental Protection Agency (EPA), based on the provisions of United States laws. Parts of the regulation may be updated annually on July 1.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

The Alaska Oil and Gas Conservation Commission (AOGCC) is a quasi-judicial agency in the U.S. state of Alaska, within the Alaska Department of Administration. It was originally established in 1955, was subsequently abolished, but was eventually reestablished. This Commission is responsible for overseeing oil and gas drilling and production, reservoir depletion, and certain other operations on private and state-owned lands in Alaska.

<span class="mw-page-title-main">Fracking</span> Fracturing bedrock by pressurized liquid

Fracking is a well stimulation technique involving the fracturing of formations in bedrock by a pressurized liquid. The process involves the high-pressure injection of "fracking fluid" into a wellbore to create cracks in the deep-rock formations through which natural gas, petroleum, and brine will flow more freely. When the hydraulic pressure is removed from the well, small grains of hydraulic fracturing proppants hold the fractures open.

<span class="mw-page-title-main">2011 Oklahoma earthquake</span> 2011 earthquake near Prague, Oklahoma

The 2011 Oklahoma earthquake was a 5.7 magnitude intraplate earthquake which occurred near Prague, Oklahoma on November 5 at 10:53 p.m. CDT in the U.S. state of Oklahoma. The epicenter of the earthquake was in the vicinity of several active wastewater injection wells. According to the United States Geological Survey (USGS), it was the most powerful earthquake ever recorded in Oklahoma until the 2016 Oklahoma earthquake. The previous record was a 5.5 magnitude earthquake that struck near the town of El Reno in 1952. The quake's epicenter was approximately 44 miles (71 km) east-northeast of Oklahoma City, near the town of Sparks and was felt in the neighboring states of Texas, Arkansas, Kansas and Missouri and even as far away as Tennessee and Wisconsin. The quake followed several minor quakes earlier in the day, including a 4.7 magnitude foreshock. The quake had a maximum perceived intensity of VIII (Severe) on the Mercalli intensity scale in the area closest to the epicenter. Numerous aftershocks were detected after the main quake, with a few registering at 4.0 magnitude.

<span class="mw-page-title-main">Fracking in the United Kingdom</span>

Fracking in the United Kingdom started in the late 1970s with fracturing of the conventional oil and gas fields near the North Sea. It was used in about 200 British onshore oil and gas wells from the early 1980s. The technique attracted attention after licences use were awarded for onshore shale gas exploration in 2008. The topic received considerable public debate on environmental grounds, with a 2019 high court ruling ultimately banning the process. The two remaining high-volume fracturing wells were supposed to be plugged and decommissioned in 2022.

<span class="mw-page-title-main">Environmental impact of fracking in the United States</span>

Environmental impact of fracking in the United States has been an issue of public concern, and includes the contamination of ground and surface water, methane emissions, air pollution, migration of gases and fracking chemicals and radionuclides to the surface, the potential mishandling of solid waste, drill cuttings, increased seismicity and associated effects on human and ecosystem health. Research has determined that human health is affected. A number of instances with groundwater contamination have been documented due to well casing failures and illegal disposal practices, including confirmation of chemical, physical, and psychosocial hazards such as pregnancy and birth outcomes, migraine headaches, chronic rhinosinusitis, severe fatigue, asthma exacerbations, and psychological stress. While opponents of water safety regulation claim fracking has never caused any drinking water contamination, adherence to regulation and safety procedures is required to avoid further negative impacts.

<span class="mw-page-title-main">Environmental impact of fracking</span>

The environmental impact of fracking is related to land use and water consumption, air emissions, including methane emissions, brine and fracturing fluid leakage, water contamination, noise pollution, and health. Water and air pollution are the biggest risks to human health from fracking. Research has determined that fracking negatively affects human health and drives climate change.

<span class="mw-page-title-main">Exemptions for fracking under United States federal law</span>

There are many exemptions for fracking under United States federal law: the oil and gas industries are exempt or excluded from certain sections of a number of the major federal environmental laws. These laws range from protecting clean water and air, to preventing the release of toxic substances and chemicals into the environment: the Clean Air Act, Clean Water Act, Safe Drinking Water Act, National Environmental Policy Act, Resource Conservation and Recovery Act, Emergency Planning and Community Right-to-Know Act, and the Comprehensive Environmental Response, Compensation, and Liability Act, commonly known as Superfund.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

Water in Arkansas is an important issue encompassing the conservation, protection, management, distribution and use of the water resource in the state. Arkansas contains a mixture of groundwater and surface water, with a variety of state and federal agencies responsible for the regulation of the water resource. In accordance with agency rules, state, and federal law, the state's water treatment facilities utilize engineering, chemistry, science and technology to treat raw water from the environment to potable water standards and distribute it through water mains to homes, farms, business and industrial customers. Following use, wastewater is collected in collection and conveyance systems, decentralized sewer systems or septic tanks and treated in accordance with regulations at publicly owned treatment works (POTWs) before being discharged to the environment.

<span class="mw-page-title-main">Water reuse in California</span>

Water reuse in California is the use of reclaimed water for beneficial use. As a heavily populated state in the drought-prone arid west, water reuse is developing as an integral part of water in California enabling both the economy and population to grow.

The Wellhead Protection Program in the 1986 amendments to the Safe Drinking Water Act requires states to protect underground sources of drinking water from contaminants that may adversely affect human health. More than one-third of the people in the United States depend on groundwater for drinking water. However, residential, municipal, commercial, industrial, and agricultural activities can all contaminate groundwater. In the event of contamination, a community's drinking water supply can develop poor quality or be lost altogether. Groundwater contamination might not be detected for a long period of time and health problems can occur from drinking contaminated water. Cleanup of a contaminated underground source of drinking water may be impossible or so difficult it costs thousands or millions of dollars. The U.S. Congress requiring Wellhead Protection Programs by 42 U.S.C. § 300h–7 in the Safe Drinking Water Act applied the concept that it is better to prevent groundwater contamination than try to remediate it. U.S. Congress by 42 U.S.C. § 300h–7 requires identification of the areas that need implementation of control measures in order to protect public water supply wells from contamination as "wellhead protection areas". Communities can use the police power established by the Tenth Amendment to the U.S. Constitution to enforce zoning and subdivision regulations to protect drinking water sources. Thereby communities can direct development away from areas that would pose a threat to drinking water sources.

County of Maui v. Hawaii Wildlife Fund, No. 18-260, 590 U.S. ___ (2020), was a United States Supreme Court case involving pollution discharges under the Clean Water Act (CWA). The case asked whether the Clean Water Act requires a permit when pollutants that originate from a non-point source can be traced to reach navigable waters through mechanisms such as groundwater transport. In a 6–3 decision, the Court ruled that such non-point discharges require a permit when they are the "functional equivalent of a direct discharge", a new test defined by the ruling. The decision vacated the ruling of the United States Court of Appeals for the Ninth Circuit, and remanded the case with instructions to apply the new standard to the lower courts with cooperation of the Environmental Protection Agency (EPA).

References