Fire sprinkler system

Last updated
A glass bulb type sprinkler head will spray water into the room if sufficient heat reaches the bulb and causes it to shatter. Sprinkler heads operate individually. Note the red liquid alcohol in the glass bulb. Fire sprinkler roof mount side view.jpg
A glass bulb type sprinkler head will spray water into the room if sufficient heat reaches the bulb and causes it to shatter. Sprinkler heads operate individually. Note the red liquid alcohol in the glass bulb.

A fire sprinkler system is an active fire protection method, consisting of a water supply system, providing adequate pressure and flowrate to a water distribution piping system, onto which fire sprinklers are connected. Although historically only used in factories and large commercial buildings, systems for homes and small buildings are now available at a cost-effective price. [1] Fire sprinkler systems are extensively used worldwide, with over 40 million sprinkler heads fitted each year. In buildings completely protected by fire sprinkler systems, over 96% of fires were controlled by fire sprinklers alone. [2]

Active fire protection (AFP) is an integral part of fire protection. AFP is characterized by items and/or systems, which require a certain amount of motion and response in order to work, contrary to passive fire protection.

Fire sprinkler Component that discharges water to protect buildings

A fire sprinkler or sprinkler head is the component of a fire sprinkler system that discharges water when the effects of a fire have been detected, such as when a predetermined temperature has been exceeded. Fire sprinklers are extensively used worldwide, with over 40 million sprinkler heads fitted each year. In buildings protected by properly designed and maintained fire sprinklers, over 99% of fires were controlled by fire sprinklers alone.

Contents

History

Leonardo da Vinci designed a sprinkler system in the 15th century. Leonardo automated his patron's kitchen with a super-oven and a system of conveyor belts. In a comedy of errors, everything went wrong during a huge banquet, and a fire broke out. "The sprinkler system worked all too well, causing a flood that washed away all the food and a good part of the kitchen." [3] [ better source needed ]

Leonardo da Vinci 15th and 16th-century Italian Renaissance polymath

Leonardo di ser Piero da Vinci, more commonly Leonardo da Vinci, was an Italian polymath of the Renaissance whose areas of interest included invention, drawing, painting, sculpture, architecture, science, music, mathematics, engineering, literature, anatomy, geology, astronomy, botany, paleontology and cartography. He is widely considered one of the greatest painters of all time, despite perhaps only 15 of his paintings having survived. The Mona Lisa is the most famous of his works and the most popular portrait ever made. The Last Supper is the most reproduced religious painting of all time and his Vitruvian Man drawing is regarded as a cultural icon as well. Leonardo's paintings and preparatory drawings—together with his notebooks, which contain sketches, scientific diagrams, and his thoughts on the nature of painting—compose a contribution to later generations of artists rivalled only by that of his contemporary Michelangelo.

Ambrose Godfrey created the first successful automated sprinkler system in 1723. [4] [ full citation needed ] He used gunpowder to release a tank of extinguishing fluid. [4] [ full citation needed ]

Ambrose Godfrey German-English chemist, inventor of the fire extinguisher

Ambrose Godfrey-Hanckwitz FRS, also known as Gottfried Hankwitz, also written Hanckewitz, or Ambrose Godfrey as he preferred to be known, was a German-born British phosphorus manufacturer and apothecary. He was one of the first phosphorus manufacturers and was one of the best and most successful in his time. He invented and patented a machine that acted as a fire extinguisher.

The world's first modern recognizable sprinkler system was installed in the Theatre Royal, Drury Lane in the United Kingdom in 1812 by its architect, William Congreve, and was covered by patent No. 3606 dated the same year.[ citation needed ] The apparatus consisted of a cylindrical airtight reservoir of 400 hogsheads (c. 95,000 litres) fed by a 10-inch (250 mm) water main which branched to all parts of the theatre. A series of smaller pipes fed from the distribution pipe were pierced with a series of 12-inch (13 mm) holes which pour water in the event of a fire.[ citation needed ]

Theatre Royal, Drury Lane West End theatre building in Covent Garden, London, England

The Theatre Royal, Drury Lane, commonly known as Drury Lane, is a West End theatre and Grade I listed building in Covent Garden, London, England. The building faces Catherine Street and backs onto Drury Lane. The building is the most recent in a line of four theatres which were built at the same location, the earliest of which dated back to 1663, making it the oldest theatre site in London still in use. According to the author Peter Thomson, for its first two centuries, Drury Lane could "reasonably have claimed to be London's leading theatre". For most of that time, it was one of a handful of patent theatres, granted monopoly rights to the production of "legitimate" drama in London.

Sir William Congreve, 2nd Baronet British politician

Sir William Congreve, 2nd Baronet KCH FRS was an English inventor and rocket artillery pioneer distinguished for his development and deployment of Congreve rockets, and a Tory Member of Parliament (MP).

Frederick Grinnell improved Henry S. Parmalee's design and in 1881 patented the automatic sprinkler that bears his name. [5] He continued to improve the device and in 1890 invented the glass disc sprinkler, [6] essentially the same as that in use today. [7]

Frederick Grinnell was a pioneer in fire safety and was the creator of the first practical automatic fire sprinkler.

"Until the 1940s, sprinklers were installed almost exclusively for the protection of commercial buildings, whose owners were generally able to recoup their expenses with savings in insurance costs. Over the years, fire sprinklers have become mandatory safety equipment" [8] in some parts of North America, in certain occupancies, including, but not limited to newly constructed "hospitals, schools, hotels and other public buildings", [8] subject to the local building codes and enforcement. However, outside of the US and Canada, sprinklers are rarely mandated by building codes for normal hazard occupancies which do not have large numbers of occupants (e.g. factories, process lines, retail outlets, petrol stations, etc.)

Within the context of building construction and building codes, "occupancy" refers to the use, or intended use, of a building, or portion of a building, for the shelter or support of persons, animals or property. A closely related meaning is the number of units in such a building that are rented, leased, or otherwise in use. Lack of occupancy, in this sense, is a "vacancy".

Sprinklers are now commonly installed in other buildings including schools and residential premises. This is largely as a result of lobbying by the National Fire Sprinkler Network, the European Fire Sprinkler Network and the British Automatic Fire Sprinkler Association.

Building regulations in Scotland and England require fire sprinkler systems to be installed in certain types of properties to ensure safety of occupants.

In Scotland, all new schools are sprinkler protected, as are new care homes, sheltered housing and high rise flats. In England all high rise buildings over 30 m must have sprinkler protection. In 2011 Wales became the first country in the world to make installation of fire sprinklers in new homes mandatory. The law applies to newly built houses and blocks of flats, as well as care homes and university halls of residence. This law came into force on September 2013.[ citation needed ]

Usage

Sprinklers have been in use in the United States since 1874, and were used in factory applications where fires at the turn of the century were often catastrophic in terms of both human and property losses. In the US, sprinklers are today required in all new high rise and underground buildings generally 75 feet (23 m) above or below fire department access, where the ability of firefighters to provide adequate hose streams to fires is limited.[ citation needed ]

Sprinklers may be required to be installed by building codes, or may be recommended by insurance companies to reduce potential property losses or business interruption. Building codes in the United States for places of assembly, generally over 100 persons, and places with overnight sleeping accommodation such as hotels, nursing homes, dormitories, and hospitals usually require sprinklers either under local building codes, as a condition of receiving State and Federal funding or as a requirement to obtain certification (essential for institutions who wish to train medical staff).[ citation needed ]

Regulations

United States

The primary fire code writing organization is the private National Fire Protection Association or NFPA. NFPA sets the standards for technical aspects of sprinklers installed in the USA. Building codes, which specify which buildings require sprinklers are generally left to local jurisdictions. However there are some exceptions:

In 1990 the US Congress passed PL-101-391, better known as the Hotel and Motel Fire Safety Act of 1990. [9] This law requires that any hotel, meeting hall, or similar institution that receives federal funds (i.e. for a government traveller's overnight stay, or a conference, etc.), must meet fire and other safety requirements. The most visible of these conditions is the implementation of sprinklers. As more and more hotels and other public accommodations upgraded their facilities to enable acceptance of government visitors, this type of construction became the de facto industry norm – even when not directly mandated by any local building codes.

If building codes do not explicitly mandate the use of fire sprinklers, the code often makes it highly advantageous to install them as an optional system. Most US building codes allow for less expensive construction materials, larger floor area limitations, longer egress paths, and fewer requirements for fire rated construction in structures protected by fire sprinklers. Consequently, the total building cost is often decreased by installing a sprinkler system and saving money in the other aspects of the project, as compared to building a non-sprinklered structure.

In 2011, Pennsylvania and California became the first US states to require sprinkler systems in all new residential construction. [10] However, Pennsylvania repealed the law later that same year. [11] Many municipalities now require residential sprinklers, even if they are not required at the state level. [12]

Europe

Renewed interest in and support for sprinkler systems in the UK has resulted in sprinkler systems being more widely installed. In schools, for example, the government has issued recommendations through Building Bulletin 100 that most new schools should be constructed with sprinkler protection. In 2011 Wales became the first country in the world where sprinklers are compulsory in all new homes. The law applies to newly built houses and blocks of flats, as well as care homes and university halls of residence. [13] In Scotland, all new schools are sprinklered, as are new care homes, sheltered housing and high rise flats.

In the UK, since the 1990s sprinklers have gained recognition within the Building Regulations (England and Wales) and Scottish Building Standards and under certain circumstances, the presence of sprinkler systems is deemed to provide a form of alternative compliance to some parts of the codes. For example, the presence of a sprinkler system will usually permit doubling of compartment sizes and increases in travel distances (to fire exits) as well as allowing a reduction in the fire rating of internal compartment walls.

In Norway as of July 2010, all new housing of more than two storeys, all new hotels, care homes and hospitals must be sprinklered. Other Nordic countries require or soon will require[ citation needed ] sprinklers in new care homes, and in Finland as of 2010 a third of care homes were retrofitted with sprinklers. A fire in an illegal immigrant detention center at Schiphol airport in The Netherlands on 27 October 2005 killed 11 detainees and led to the retrofitting of sprinklers in all similarly designed prisons in the Netherlands. A fire at Düsseldorf Airport on 11 April 1996 which killed 17 people led to sprinklers being retrofitted in all major German airports. Most European countries also require sprinklers in shopping centers, in large warehouses and in high-rise buildings.[ citation needed ]

Operation

A sign warns hotel guests not to hang items from fire sprinklers Contact with Sprinkler Will Cause Flooding Placard.jpg
A sign warns hotel guests not to hang items from fire sprinklers

Each closed-head sprinkler is held closed by either a heat-sensitive glass bulb or a two-part metal link held together with fusible alloy. The glass bulb or link applies pressure to a pipe cap which acts as a plug which prevents water from flowing until the ambient temperature around the sprinkler reaches the design activation temperature of the individual sprinkler head. In a standard wet-pipe sprinkler system, each sprinkler activates independently when the predetermined heat level is reached. Thus, only sprinklers near the fire will operate, normally just one or two. This maximizes water pressure over the point of fire origin, and minimizes water damage to the building.[ citation needed ]

A sprinkler activation will do less water damage than a fire department hose stream, which provide approximately 900 litres/min (250 US gallons/min). A typical sprinkler used for industrial manufacturing occupancies discharge about 75-150 litres/min (20-40 US gallons/min). However, a typical Early Suppression Fast Response (ESFR) sprinkler at a pressure of 50 psi (340 kPa) will discharge approximately 380 litres per minute (100 US gal/min). In addition, a sprinkler will usually activate within one to four minutes of the fire's start, whereas it typically takes at least five minutes for a fire department to register an alarm and drive to the fire site, and an additional ten minutes to set up equipment and apply hose streams to the fire. This additional time can result in a much larger fire, requiring much more water to extinguish.

Types

Fire sprinkler control valve assembly. Sprinkler valve.png
Fire sprinkler control valve assembly.

Wet pipe systems

By a wide margin, wet pipe sprinkler systems are installed more often than all other types of fire sprinkler systems. They also are the most reliable, because they are simple, with the only operating components being the automatic sprinklers and (commonly, but not always) the automatic alarm check valve. An automatic water supply provides water under pressure to the system piping.

Wet pipe antifreeze

Wet systems may be charged with an antifreeze chemical, for use where pipes can't reliably be kept above 40 °F (4 °C).

While such systems were once common in cold areas, after several fires caused by systems running too high a percentage of antifreeze, the regulatory authority in the United States effectively banned new antifreeze installations. A sunset date of 2022 applies to older antifreeze systems in the USA [14] . This regulatory action has greatly increased costs and reduced options for cold weather sprinkler systems.

Dry pipe systems

Garage sprinkler system in New York City Garage Sprinkler in NYC.JPG
Garage sprinkler system in New York City

Dry pipe systems are the second most common sprinkler system type. Dry pipe systems are installed in spaces in which the ambient temperature may be cold enough to freeze the water in a wet pipe system, rendering the system inoperable. Dry pipe systems are most often used in unheated buildings, in parking garages, in outside canopies attached to heated buildings (in which a wet pipe system would be provided), or in refrigerated coolers. In regions using NFPA regulations, wet pipe systems cannot be installed unless the range of ambient temperatures remains above 40 °F (4 °C). [15]

Water is not present in the piping until the system operates; instead, the piping is filled with air at a pressure below the water supply pressure. To prevent the larger water supply pressure from prematurely forcing water into the piping, the design of the dry pipe valve (a specialized type of check valve) results in a greater force on top of the check valve clapper by the use of a larger valve clapper area exposed to the piping air pressure, as compared to the higher water pressure but smaller clapper surface area.

When one or more of the automatic sprinkler heads is triggered, it opens allowing the air in the piping to vent from that sprinkler. Each sprinkler operates independently, as its temperature rises above its triggering threshold. As the air pressure in the piping drops, the pressure differential across the dry pipe valve changes, allowing water to enter the piping system. Water flow from sprinklers, needed to control the fire, is delayed until the air is vented from the sprinklers. In regions using NFPA 13 regulations, the time it takes water to reach the hydraulically remote sprinkler from the time that sprinkler is activated is limited to a maximum of 60 seconds. In industry practice, this is known as the "Maximum Time of Water Delivery". The maximum time of water delivery may be required to be reduced, depending on the hazard classification of the area protected by the sprinkler system. [16]

Some property owners and building occupants may view dry pipe sprinklers as advantageous for protection of valuable collections and other water sensitive areas. This perceived benefit is due to a fear that wet system piping may slowly leak water without attracting notice, while dry pipe systems may not fail in this manner.[ citation needed ]

Disadvantages of using dry pipe fire sprinkler systems include:

Dry pipe sprinkler system supply main with corrosion debris caused by oxidation Dry Pipe Supply Main.jpg
Dry pipe sprinkler system supply main with corrosion debris caused by oxidation

Deluge systems

"Deluge" systems are systems in which all sprinklers connected to the water piping system are open, in that the heat sensing operating element is removed, or specifically designed as such. These systems are used for special hazards where rapid fire spread is a concern, as they provide a simultaneous application of water over the entire hazard. They are sometimes installed in personnel egress paths or building openings to slow travel of fire (e.g. openings in a fire-rated wall).

Water is not present in the piping until the system operates. Because the sprinkler orifices are open, the piping is at atmospheric pressure. To prevent the water supply pressure from forcing water into the piping, a "deluge valve" is used in the water supply connection, which is a mechanically latched valve. It is a non-resetting valve, and stays open once tripped.

Because the heat sensing elements present in the automatic sprinklers have been removed (resulting in open sprinklers), the deluge valve must be opened as signaled by a fire alarm system. The type of fire alarm initiating device is selected mainly based on the hazard (e.g. pilot sprinklers, smoke detectors, heat detectors, or optical flame detectors). The initiation device signals the fire alarm panel, which in turn signals the deluge valve to open. Activation can also be manual, depending on the system goals. Manual activation is usually via an electric or pneumatic fire alarm pull station, which signals the fire alarm panel, which in turn signals the deluge valve to open.

Operation - Activation of a fire alarm initiating device, or a manual pull station, signals the fire alarm panel, which in turn signals the deluge valve to open, allowing water to enter the piping system. Water flows from all sprinklers simultaneously.

Pre-action systems

Pre-action sprinkler systems are specialized for use in locations where accidental activation is especially undesirable, such as in museums with rare art works, manuscripts, or books; and data centers, for protection of computer equipment from accidental water discharge.

Pre-action systems are hybrids of wet, dry, and deluge systems, depending on the exact system goal. There are two main sub-types of pre-action systems: single interlock, and double interlock.

The operation of single interlock systems are similar to dry systems except that these systems require that a "preceding" fire detection event, typically the activation of a heat or smoke detector, takes place prior to the "action" of water introduction into the system's piping by opening the pre-action valve, which is a mechanically latched valve (i.e. similar to a deluge valve). In this way, the system is essentially converted from a dry system into a wet system. The intent is to reduce the undesirable time delay of water delivery to sprinklers that is inherent in dry systems. Prior to fire detection, if the sprinkler operates, or the piping system develops a leak, loss of air pressure in the piping will activate a trouble alarm. In this case, the pre-action valve will not open due to loss of supervisory pressure, and water will not enter the piping.

The operation of double interlock systems are similar to deluge systems except that automatic sprinklers are used. These systems require that both a "preceding" fire detection event, typically the activation of a heat or smoke detector, and an automatic sprinkler operation take place prior to the "action" of water introduction into the system's piping. Activation of either the fire detectors alone, or sprinklers alone, without the concurrent operation of the other, will not allow water to enter the piping. Because water does not enter the piping until a sprinkler operates, double interlock systems are considered as dry systems in terms of water delivery times, and similarly require a larger design area.

Foam water sprinkler systems

A foam water fire sprinkler system is a special application system, discharging a mixture of water and low expansion foam concentrate, resulting in a foam spray from the sprinkler. These systems are usually used with special hazards occupancies associated with high challenge fires, such as flammable liquids, and airport hangars. Operation is as described above, depending on the system type into which the foam is injected.

Water spray

"Water spray" systems are operationally identical to a deluge system, but the piping and discharge nozzle spray patterns are designed to protect a uniquely configured hazard, usually being three-dimensional components or equipment (i.e. as opposed to a deluge system, which is designed to cover the horizontal floor area of a room). The nozzles used may not be listed fire sprinklers, and are usually selected for a specific spray pattern to conform to the three-dimensional nature of the hazard (e.g. typical spray patterns being oval, fan, full circle, narrow jet). Examples of hazards protected by water spray systems are electrical transformers containing oil for cooling or turbo-generator bearings. Water spray systems can also be used externally on the surfaces of tanks containing flammable liquids or gases (such as hydrogen). Here the water spray is intended to cool the tank and its contents to prevent tank rupture/explosion (BLEVE) and fire spread.

Water mist systems

Water mist systems are used for special applications in which it is decided that creating a heat absorbent vapor is the primary objective. This type of system is typically used where water damage may be a concern, or where water supplies are limited. NFPA 750 [17] defines water mist as a water spray with a droplet size of "less than 1000 microns at the minimum operation pressure of the discharge nozzle." The droplet size can be controlled by the adjusting discharge pressure through a nozzle of a fixed orifice size. By creating a mist, an equal volume of water will create a larger total surface area exposed to the fire. The larger total surface area better facilitates the transfer of heat, thus allowing more water droplets to turn to steam more quickly. A water mist, which absorbs more heat than water per unit time, due to exposed surface area, will more effectively cool the room, thus reducing the temperature of the flame.

Operation - Water mist systems can operate with the same functionality as deluge, wet pipe, dry pipe, or pre-action systems. The difference is that a water mist system uses a compressed gas as an atomizing medium, which is pumped through the sprinkler pipe. Instead of compressed gas, some systems use a high-pressure pump to pressurize the water so it atomizes as it exits the sprinkler nozzle.[ citation needed ] Systems can be applied using local application method or total flooding method, similar to Clean Agent Fire Protection Systems.

Design

TemperatureColor of liquid alcohol

inside bulb

°C°F
57135 Orange
68155 Red
79174Yellow
93200 Green
141286 Blue
182360 Purple
227
260
440
500
Black

This chart from the fire
safety standards
indicates the colour
of the bulb and the
respective operating
temperature.

Sprinkler glass bulbs with different operating temperatures Sprinkler glass bulbs.svg
Sprinkler glass bulbs with different operating temperatures

Sprinkler systems are intended to either control the fire or to suppress the fire. Control mode sprinklers are intended to control the heat release rate of the fire to prevent building structure collapse, and pre-wet the surrounding combustibles to prevent fire spread. The fire is not extinguished until the burning combustibles are exhausted or manual extinguishment is effected by firefighters. Suppression mode sprinklers (formerly known as Early Suppression Fast Response (ESFR) sprinklers) are intended to result in a severe sudden reduction of the heat release rate of the fire, followed quickly by complete extinguishment, prior to manual intervention.

Most sprinkler systems installed today are designed using an area and density approach. First the building use and building contents are analyzed to determine the level of fire hazard. Usually buildings are classified as light hazard, ordinary hazard group 1, ordinary hazard group 2, extra hazard group 1, or extra hazard group 2. After determining the hazard classification, a design area and density can be determined by referencing tables in the National Fire Protection Association (NFPA) standards. The design area is a theoretical area of the building representing the worst case area where a fire could burn. The design density is a measurement of how much water per square foot of floor area should be applied to the design area.

For example, in an office building classified as light hazard, a typical design area would be 1,500 square feet (140 m2) and the design density would be 0.1 US gallons per minute (0.38 l/min) per 1 square foot (0.093 m2) or a minimum of 150 US gallons per minute (570 l/min) applied over the 1,500-square-foot (140 m2) design area. Another example would be a manufacturing facility classified as ordinary hazard group 2 where a typical design area would be 1,500 square feet (140 m2) and the design density would be 0.2 US gallons per minute (0.76 l/min) per 1 square foot (0.093 m2) or a minimum of 300 US gallons per minute (1,100 l/min) applied over the 1,500-square-foot (140 m2) design area.

After the design area and density have been determined, calculations are performed to prove that the system can deliver the required amount of water over the required design area. These calculations account for all of the pressure that is lost or gained between the water supply source and the sprinklers that would operate in the design area. This includes pressure losses due to friction inside the piping and losses or gains due to elevational differences between the source and the discharging sprinklers. Sometimes momentum pressure from water velocity inside the piping is also calculated. Typically these calculations are performed using computer software but before the advent of computer systems these sometimes complicated calculations were performed by hand. This skill of calculating sprinkler systems by hand is still required training for a sprinkler system design technologist who seeks senior level certification from engineering certification organizations such as the National Institute for Certification in Engineering Technologies (NICET).

Sprinkler systems in residential structures are becoming more common as the cost of such systems becomes more practical and the benefits become more obvious. Residential sprinkler systems usually fall under a residential classification separate from the commercial classifications mentioned above. A commercial sprinkler system is designed to protect the structure and the occupants from a fire. Most residential sprinkler systems are primarily designed to suppress a fire in such a way to allow for the safe escape of the building occupants. While these systems will often also protect the structure from major fire damage, this is a secondary consideration. In residential structures sprinklers are often omitted from closets, bathrooms, balconies, garages and attics because a fire in these areas would not usually impact the occupant's escape route.

If water damage or water volume is of particular concern, a technique called Water Mist Fire Suppression may be an alternative. This technology has been under development for over 50 years. It hasn't entered general use, but is gaining some acceptance on ships and in a few residential applications. Mist suppression systems work by using the heat of the fire to 'flash' the water mist cloud to steam. This then smothers the fire. As such, mist systems tend to be highly effective where there is likely to be a free-burning hot fire. Where there is insufficient heat (as in a deep seated fire such as will be found in stored paper) no steam will be generated and the mist system will not extinguish the fire. Some tests have shown that the volume of water needed to extinguish a fire with such a system installed can be dramatically less than with a conventional sprinkler system. [18]

Costs

In 2008, the installed costs of sprinkler systems ranged from US$0.31 – $3.66 per square foot, depending on type and location. Residential systems, installed at the time of initial home construction and utilizing municipal water supplies, average about US$0.35/square foot. [19] Systems can be installed during construction or retrofitted. Some communities have laws requiring residential sprinkler systems, especially where large municipal hydrant water supplies ("fire flows") are not available. Nationwide in the United States, one and two-family homes generally do not require fire sprinkler systems, although the overwhelming loss of life due to fires occurs in these spaces.[ citation needed ] Residential sprinkler systems are inexpensive (about the same per square foot as carpeting or floor tiling), but require larger water supply piping than is normally installed in homes, so retrofitting is usually cost prohibitive.

According to the National Fire Protection Association (NFPA), fires in hotels with sprinklers averaged 78% less damage than fires in hotels without them (1983–1987). The NFPA says the average loss per fire in buildings with sprinklers was $2,300, compared to an average loss of $10,300 in unsprinklered buildings. The NFPA adds that there is no record of a fatality in a fully sprinklered building outside the point of fire origin.[ citation needed ] However, in a purely economic comparison, this is not a complete picture; the total costs of fitting, and the costs arising from non-fire triggered release must be factored.

The NFPA states that it "has no record of a fire killing more than two people in a completely sprinklered building where a sprinkler system was properly operating, except in an explosion or flash fire or where industrial fire brigade members or employees were killed during fire suppression operations."

The world's largest fire sprinkler manufacturer is the Fire Protection Products division of Tyco International.[ citation needed ]

See also

Related Research Articles

Fire hydrant connection point by which firefighters can tap into a water supply

A fire hydrant is a connection point by which firefighters can tap into a water supply. It is a component of active fire protection. Underground fire hydrants have been used in Europe and Asia since at least the 18th century. Above ground pillar-type hydrants are a 19th-century invention.

Backflow prevention device

A backflow prevention device is used to protect potable water supplies from contamination or pollution due to backflow.

Piping system of pipes used to transport fluids (gases, liquids or pourable or pumpable solids) from one location to another;high-performance (high-pressure, high-flow, high-temperature or hazardous-material) conveyance of fluids in specialized applications

Within industry, piping is a system of pipes used to convey fluids from one location to another. The engineering discipline of piping design studies the efficient transport of fluid.

This is a glossary of firefighting equipment.

Irrigation sprinkler

An irrigation sprinkler is a device used to irrigate agricultural crops, lawns, landscapes, golf courses, and other areas. They are also used for cooling and for the control of airborne dust. Sprinkler irrigation is the method of applying water in a controlled manner in way similar to rainfall. The water is distributed through a network that may consist of pumps, valves, pipes, and sprinklers.

Hydronics

Hydronics is the use of a liquid heat-transfer medium in heating and cooling systems. The working fluid is typically water, glycol, or mineral oil. Some of the oldest and most common examples are steam and hot-water radiators. Historically, in large-scale commercial buildings such as high-rise and campus facilities, a hydronic system may include both a chilled and a heated water loop, to provide for both heating and air conditioning. Chillers and cooling towers are used either separately or together as means to provide water cooling, while boilers heat water. A recent innovation is the chiller boiler system, which provides an efficient form of HVAC for homes and smaller commercial spaces.

Fire prevention is a function of many fire departments. The goal of fire prevention is to educate the public to take precautions to prevent potentially harmful fires, and be educated about surviving them. It is a proactive method of reducing emergencies and the damage caused by them. Many fire departments have a Fire Prevention Officer.

Fire pump Pumps as firefighting equipment

A fire pump is a part of a fire sprinkler system's water supply and powered by electric, diesel or steam. The pump intake is either connected to the public underground water supply piping, or a static water source. The pump provides water flow at a higher pressure to the sprinkler system risers and hose standpipes. A fire pump is tested and listed for its use specifically for fire service by a third-party testing and listing agency, such as UL or FM Global. The main code that governs fire pump installations in North America is the National Fire Protection Association's NFPA 20 Standard for the Installation of Stationary Fire Pumps for Fire Protection.

Victaulic is a developer and producer of mechanical pipe joining systems and is the originator of the grooved pipe couplings joining system. Victaulic is a global company with 15 major manufacturing facilities, 28 branches, and over 3600 employees worldwide. Currently, Victaulic headquarters is located in Easton, PA. John F. Malloy has served as CEO since 2002.

Piping and plumbing fitting piece that fits or connects pipes and tubes; used in pipe systems to connect straight pipe or tubing sections, adapt to different sizes or shapes and for other purposes

A fitting or adapter is used in pipe systems to connect straight sections of pipe or tube, adapt to different sizes or shapes, and for other purposes such as regulating fluid flow. These fittings are used in plumbing to manipulate the conveyance of water, gas, or liquid waste in domestic or commercial environments, within a system of pipes or tubes.

Heat and smoke vents are installed in buildings as an active fire protection measure. They are openings in the roof which are intended to vent the heat and smoke developed by a fire inside the building by the action of buoyancy, such that they are known as "gravity vents".

Deluge gun equipment used in firefighting

A deluge gun, fire monitor, master stream or deck gun is an aimable controllable high-capacity water jet used for manual firefighting or automatic fire protection systems. Deluge guns are often designed to accommodate foam which has been injected in the upstream piping.

An External Water Spray System (EWSS) is a domestic external fire sprinkler system designed to protect homes from bushfires and wildfires. While external spray systems have long been used in fire protection for buildings and facilities, EWSS refers to domestic bushfire/wildfire systems.

Fire extinguisher An active fire protection device

A fire extinguisher is an active fire protection device used to extinguish or control small fires, often in emergency situations. It is not intended for use on an out-of-control fire, such as one which has reached the ceiling, endangers the user, or otherwise requires the expertise of a fire brigade. Typically, a fire extinguisher consists of a hand-held cylindrical pressure vessel containing an agent which can be discharged to extinguish a fire. Fire extinguishers manufactured with non-cylindrical pressure vessels also exist but are less common.

Automatic fire suppression

Automatic fire suppression systems control and extinguish fires without human intervention. Examples of automatic systems include fire sprinkler system, gaseous fire suppression, and condensed aerosol fire suppression. When fires are extinguished in the early stages loss of life is minimal since 93% of all fire-related deaths occur once the fire has progressed beyond the early stages.

Sprinkler fitting organization

Sprinkler fitting is an occupation consisting of the installing, testing, inspecting, and certifying of automatic fire suppression systems in all types of structures. Sprinkler systems installed by sprinkler fitters can include the underground supply as well as integrated overhead piping systems and standpipes. The fire suppression piping may contain water, air, antifreeze, gas or chemicals as in a hood system, or a mixture producing fire retardant foam.

Hydraulic calculations are a practice within the fire safety industry of determining the flow of liquids through a medium to ensure that fires can be adequately controlled.

In fire protection engineering, the K-factor formula is used to calculate the discharge rate from a nozzle. Spray Nozzles can be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.

References

  1. "Industrial Fire sprinklers". Fire Safety Advice Centre. Archived from the original on 16 January 2013. Retrieved 6 February 2013.
  2. Hall, John R. Jr. (June 2013). "US Experience with Sprinklers". NFPA. Archived from the original on 12 March 2016. Retrieved 15 March 2016.
  3. Gelb, Michael J. (2000). "The+sprinkler+system+worked+all+too+well,+causing+a+flood+that+washed+away+all+the+food+and+a+good+part+of+the+kitchen." How to Think Like Leonardo da Vinci. New York, New York: Dell Publishing. p. 79. ISBN   9780440508274.
  4. 1 2 "History of Sprinkler Systems". Associated Fire Protection.
  5. U.S. Patent 248,828
  6. U.S. Patent 431,971
  7. Casey Cavanaugh Grant, PE "The Birth of NFPA" Archived 28 December 2007 at the Wayback Machine NFPA, 1996
  8. 1 2 Merit Sprinkler Company. "Sprinkler History". Archived from the original on 11 August 2006. Retrieved 11 August 2006.
  9. "Archived copy". Archived from the original on 22 January 2015. Retrieved 22 January 2015.CS1 maint: Archived copy as title (link) National Fire Protection Association (NFPA)
  10. Wotapka, Dawn (22 December 2010). "Builders Smokin' Mad Over New Sprinkler Rules". The Wall Street Journal. Archived from the original on 2 September 2017.
  11. "Pennsylvania repeals automatic sprinkler requirement". Archived from the original on 11 July 2015. Retrieved 8 July 2015.
  12. "Sprinkler requirements by state". Archived from the original on 10 July 2015. Retrieved 8 July 2015.
  13. "Fire sprinklers compulsory for all new homes in Wales". BBC News. 16 February 2011. Archived from the original on 5 August 2011. Retrieved 4 August 2011.
  14. [www.nortechsystems.com/2018/03/16/antifreeze-fire-sprinkler-system/ "The End of Antifreeze in Fire Sprinkler Systems"] Check |url= value (help). Fire Safety Advice Centre. Retrieved 29 November 2018.
  15. NFPA 13 2007 ed. Sections 7-2 and A7-2
  16. NFPA 13 2010 ed. Table 7.2.3.6.1
  17. NFPA 750
  18. FRONT MATTER - Fire Suppression Substitutes and Alternatives to Halon for U.S. Navy Applications - The National Academies Press. 1997. doi:10.17226/5744. ISBN   978-0-309-05782-0. Archived from the original on 22 January 2015.
  19. "Home Fire Sprinkler Cost Assessment", published 2008 by the Fire Protection Research Foundation