Spontaneous combustion or spontaneous ignition is a type of combustion which occurs by self-heating (increase in temperature due to exothermic internal reactions), followed by thermal runaway (self heating which rapidly accelerates to high temperatures) and finally, autoignition. [1] It is distinct from (but has similar practical effects to) pyrophoricity, in which a compound needs no self-heat to ignite. The correct storage of spontaneously combustible materials is extremely important considering improper storage is the main cause of spontaneous combustion. Materials such as coal, cotton, hay, and oils should be stored at proper temperatures and moisture levels to prevent spontaneous combustion. Allegations of spontaneous human combustion are considered pseudoscience. [2]
Spontaneous combustion can occur when a substance with a relatively low ignition temperature such as hay, straw, peat, etc., begins to release heat. This may occur in several ways, either by oxidation in the presence of moisture and air, or bacterial fermentation, which generates heat. These materials are thermal insulators that prevent the escape of heat causing the temperatures of the material to rise above its ignition point. Combustion will begin when a sufficient oxidizer, such as oxygen, and fuel are present to maintain the reaction into thermal runaway.
Thermal runaway can occur when the amount of heat produced is greater than the rate at which the heat is lost. Materials that produce a lot of heat may combust in relatively small volumes, while materials that produce very little heat may only become dangerous when well insulated or stored in large volumes. Most oxidation reactions accelerate at higher temperatures, so a pile of material that would have been safe at a low ambient temperature may spontaneously combust during hotter weather.
Hay [3] and compost piles [4] may self-ignite because of heat produced by bacterial fermentation, which then can cause pyrolysis and oxidation that leads to thermal runaway reactions that reach autoignition temperature. Rags soaked with drying oils or varnish can oxidize rapidly due to the large surface area, and even a small pile can produce enough heat to ignite under the right conditions. [5] [6] Coal can ignite spontaneously when exposed to oxygen, which causes it to react and heat up when there is insufficient ventilation for cooling. [7] Pyrite oxidation is often the cause of coal's spontaneous ignition in old mine tailings. Pistachio nuts are highly flammable when stored in large quantities, and are prone to self-heating and spontaneous combustion. [8] Large manure piles can spontaneously combust during conditions of extreme heat. Cotton and linen can ignite when they come into contact with polyunsaturated vegetable oils (linseed, massage oils); bacteria will slowly decompose the materials, producing heat. If these materials are stored in a way so the heat cannot escape, the heat buildup increases the rate of decomposition and thus the rate of heat buildup increases. Once ignition temperature is reached, combustion occurs with oxidizers present (oxygen). Nitrate film, when improperly stored, can deteriorate into an extremely flammable condition and combust. The 1937 Fox vault fire was caused by spontaneously combusting nitrate film.
Hay is one of the most widely studied materials in spontaneous combustion. It is very difficult to establish a unified theory of what occurs in hay self-heating because of the variation in the types of grass used in hay preparation, and the different locations where it is grown. It is anticipated that dangerous heating will occur in hay that contains more than 25% moisture. The largest number of fires occur within two to six weeks of storage, with the majority occurring in the fourth or fifth week.
The process may begin with microbiological activity (bacteria or mold) which ferments the hay, creating ethanol. Ethanol has a flash point of 14 °C (57 °F). So with an ignition source such as static electricity, e.g. from a mouse running through the hay, combustion may occur. The temperature then increases, igniting the hay itself.
Microbiological activity reduces the amount of oxygen available in the hay. At 100 °C, wet hay absorbed twice the amount of oxygen of dry hay. There has been conjecture that the complex carbohydrates present in hay break down to simpler sugars, which are more readily fermented to ethanol. [9]
Charcoal, when freshly prepared, can self-heat and catch fire. This is separate from hot spots which may have developed from the preparation of charcoal. Charcoal that has been exposed to air for a period of eight days is not considered to be hazardous. There are many factors involved, among them the type of wood and the temperature at which the charcoal was prepared. [10]
Extensive studies have been completed on the self-heating of coal. Improper storage of coal is a main cause of spontaneous combustion, as there can be a continuous oxygen supply and the oxidization of coal produces heat that doesn't dissipate. Over time, these conditions can cause self-heating. [11] The tendency to self-heat decreases with the increasing rank of the coal. Lignite coals are more active than bituminous coals, which are more active than anthracite coals. Freshly mined coal consumes oxygen more rapidly than weathered coal, and freshly mined coal self-heats to a greater extent than weathered coal. The presence of water vapor may also be important, as the rate of heat generation accompanying the absorption of water in dry coal from saturated air can be an order of magnitude or more than the same amount of dry air. [12]
Cotton too can be at great risk of spontaneous combustion. [13] In an experimental study on the spontaneous combustion of cotton, three different types of cotton were tested at different heating rates and pressures. Different cotton varieties can have different self-heating oxidation temperature and larger reactions. Understanding what type of cotton is being stored will help reduce the risk of spontaneous combustion. [14] A striking example of a cargo igniting spontaneously occurred on the ship Earl of Eldon in the Indian Ocean on 24 August 1834.
Oil seeds and residue from oil extraction will self-heat if too moist. Typically, storage at 9–14% moisture is satisfactory, but limits are established for each individual variety of oil seed. In the presence of excess moisture that is just below the level required for germinating seed, the activity of mold fungi is a likely candidate for generating heat. This was established for flax and sunflower seeds, and soy beans. Many of the oil seeds generate oils that are self-heating. Palm kernels, rapeseed, and cotton seed have also been studied. [15] Rags soaked in linseed oil can spontaneously ignite if improperly stored or discarded. [16]
Copra, the dried, white flesh of the coconut from which coconut oil is extracted, [17] has been classed with dangerous goods due to its spontaneously combustive nature. [18] It is identified as a Division 4.2 substance.
There have been unconfirmed anecdotal reports of people spontaneously combusting. This alleged phenomenon is not considered true spontaneous combustion, as supposed cases have been largely attributed to the wick effect, whereby an external source of fire ignites nearby flammable materials and human fat or other sources. [19]
There are many factors that can help predict spontaneous combustion and prevent it. The longer a material sits, the higher the risk of spontaneous combustion. Preventing spontaneous combustion can be as simple as not leaving materials stored for extended periods of time, controlling air flow, moisture, methane, and pressure balances. There are also many materials that prevent spontaneous combustion. For example, spontaneous coal combustion can be prevented by physical based materials such as chlorine salts, ammonium salts, alkalis, inert gases, colloids, polymers, aerosols, and LDHs, as well as chemical-based materials like antioxidants, ionic liquids, and composite materials. [20]
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
Thermite is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic reduction-oxidation (redox) reaction. Most varieties are not explosive, but can create brief bursts of heat and high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as black powder.
A substance is pyrophoric if it ignites spontaneously in air at or below 54 °C (129 °F) or within 5 minutes after coming into contact with air. Examples are organolithium compounds and triethylborane. Pyrophoric materials are often water-reactive as well and will ignite when they contact water or humid air. They can be handled safely in atmospheres of argon or nitrogen. Class D fire extinguishers are designated for use in fires involving pyrophoric materials. A related concept is hypergolicity, in which two compounds spontaneously ignite when mixed.
A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction made in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasma.
The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to supply the activation energy needed for combustion. The temperature at which a chemical ignites decreases as the pressure is increased.
A backdraft, backdraught or smoke explosion is the abrupt burning of superheated gases in a fire caused when oxygen rapidly enters a hot, oxygen-depleted environment; for example, when a window or door to an enclosed space is opened or broken. Backdrafts are typically seen as a blast of smoke and/or flame out of an opening of a building. Backdrafts present a serious threat to firefighters. There is some debate concerning whether backdrafts should be considered a type of flashover.
A drying oil is an oil that hardens to a tough, solid film after a period of exposure to air, at room temperature. The oil hardens through a chemical reaction in which the components crosslink by the action of oxygen. Drying oils are a key component of oil paint and some varnishes. Some commonly used drying oils include linseed oil, tung oil, poppy seed oil, perilla oil, castor oil and walnut oil. The use of natural drying oils has declined over the past several decades, as they have been replaced by alkyd resins and other binders.
The fire triangle or combustion triangle is a simple model for understanding the necessary ingredients for most fires.
The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.
Fire making, fire lighting or fire craft is the process of artificially starting a fire. It requires completing the fire triangle, usually by heating tinder above its autoignition temperature.
Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine.
Smouldering or smoldering is the slow, flameless form of combustion, sustained by the heat evolved when oxygen directly attacks the surface of a condensed-phase fuel. Many solid materials can sustain a smouldering reaction, including coal, cellulose, wood, cotton, tobacco, cannabis, peat, plant litter, humus, synthetic foams, charring polymers including polyurethane foam and some types of dust. Common examples of smouldering phenomena are the initiation of residential fires on upholstered furniture by weak heat sources, and the persistent combustion of biomass behind the flaming front of wildfires.
Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel with few industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.
A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.
A thermal oxidizer is a process unit for air pollution control in many chemical plants that decomposes hazardous gases at a high temperature and releases them into the atmosphere.
A cone calorimeter is an instrument used to study the behavior of fire in small samples of condensed phase materials. It is widely used in the field of fire safety engineering and in oxygen consumption calorimetry.
A glow plug engine, or glow engine, is a type of small internal combustion engine typically used in model aircraft, model cars and similar applications. The ignition is accomplished by a combination of heating from compression, heating from a glow plug and the catalytic effect of the platinum within the glow plug on the methanol within the fuel.
Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
Oxygen compatibility is the issue of compatibility of materials for service in high concentrations of oxygen. It is a critical issue in space, aircraft, medical, underwater diving and industrial applications. Aspects include effects of increased oxygen concentration on the ignition and burning of materials and components exposed to these concentrations in service.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
Yet all these explanations are pseudoscientific, and there is no evidence for any of them