Pool fire

Last updated

A pool fire is a type of diffusion flame where a layer of volatile liquid fuel is evaporating and burning. The fuel layer can be either on a horizontal solid substrate [1] or floating on a higher-density liquid, usually water. [2] Pool fires are an important scenario in fire process safety and combustion science, as large amounts of liquid fuels are stored and transported by different industries.

Contents

Physical properties

The most important physical parameter describing a pool fire is the heat release rate, which determines the minimum safe distance needed to avoid burns from thermal radiation. The heat release rate is limited by the rate of evaporation of the fuel, as the combustion reaction takes place in the gas phase. The evaporation rate, in turn, is determined by other physical parameters, such as the depth, surface area and shape of the pool, as well as the fuel boiling point, heat of vaporization, heat of combustion, thermal conductivity and others. A feedback loop exists between the heat release rate and evaporation rate, as a significant part of the energy released in the combustion reaction will be transmitted from the gas phase to the liquid fuel, and can supply the needed heat of vaporization. [3] In the case of large pool fires, most of the heat transfer happens in the form of thermal radiation. [4]

Typical fuels in accidental pool fires, or experiments simulating them, include aliphatic hydrocarbons (n-heptane, liquefied propane gas), aromatic hydrocarbons (toluene, xylene), alcohols (methanol, ethanol) or mixtures thereof (kerosene). It is important that a pool fire involving a water-insoluble fuel is not attempted to be extinguished with water, as this can trigger explosive boiling and spattering of the burning material.

Open-top tank fires are pool fires of industrial scale that occur when the roof of an atmospheric tank fails due to internal tank blast, followed by the contents of the tank catching fire. If a layer of water is present underneath the fuel and the fuel is a mixture of chemical species with several different boiling points, a boilover may eventually occur, greatly aggravating the fire. The boilover onset occurs as soon as a hot zone propagates down through the fuel, reaching the water and making it boil. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

<span class="mw-page-title-main">Evaporation</span> Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

<span class="mw-page-title-main">Propane</span> Hydrocarbon compound

Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane is one of a group of liquefied petroleum gases. The others include propylene, butane, butylene, butadiene, isobutylene, and mixtures thereof. Propane has lower volumetric energy density, but higher gravimetric energy density and burns more cleanly than gasoline and coal.

<span class="mw-page-title-main">Liquid hydrogen</span> Liquid state of the element hydrogen

Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.

<span class="mw-page-title-main">Boiler</span> Closed vessel in which fluid is heated

A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Flame</span> Visible, gaseous part of a fire

A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasma.

<span class="mw-page-title-main">RP-1</span> Highly refined form of kerosene used as rocket fuel

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (H2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than H2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, absorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Firefighting</span> Actions to prevent damage from fire

Firefighting is a profession aimed at controlling and extinguishing fire. A person who engages in firefighting is known as a firefighter or fireman. Firefighters typically undergo a high degree of technical training. This involves structural firefighting and wildland firefighting. Specialized training includes aircraft firefighting, shipboard firefighting, aerial firefighting, maritime firefighting, and proximity firefighting.

The heating value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it.

<span class="mw-page-title-main">Steam explosion</span> Explosion created from a violent boiling of water

A steam explosion is an explosion caused by violent boiling or flashing of water or ice into steam, occurring when water or ice is either superheated, rapidly heated by fine hot debris produced within it, or heated by the interaction of molten metals. Steam explosions are instances of explosive boiling. Pressure vessels, such as pressurized water (nuclear) reactors, that operate above atmospheric pressure can also provide the conditions for a steam explosion. The water changes from a solid or liquid to a gas with extreme speed, increasing dramatically in volume. A steam explosion sprays steam and boiling-hot water and the hot medium that heated it in all directions, creating a danger of scalding and burning.

A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Electric heating</span> Process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

A boilover is an extremely hazardous situation in which a water layer under a pool fire starts boiling, which results in a significant increase in fire intensity accompanied by violent expulsion of burning fluid to the surrounding areas.

<span class="mw-page-title-main">Steam</span> Water in the gas phase

Steam is water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. Steam that is saturated or superheated is invisible; however, wet steam, a visible mist or aerosol of water droplets, is often referred to as "steam".

A liquid nitrogen vehicle is powered by liquid nitrogen, which is stored in a tank. Traditional nitrogen engine designs work by heating the liquid nitrogen in a heat exchanger, extracting heat from the ambient air and using the resulting pressurized gas to operate a piston or rotary motor. Vehicles propelled by liquid nitrogen have been demonstrated, but are not used commercially. One such vehicle, Liquid Air, was demonstrated in 1902.

The Tacoa disaster occurred on December 19, 1982 as a result of a fuel oil tank fire on the premises of the Ricardo Zuloaga thermal power plant, owned by Electricidad de Caracas and located in Tacoa, a seaside village and an area of Vargas, Venezuela.

References

  1. Zhao, J.; Huang, H.; Wang, H.; Zhao, Z.; Liu, Q.; Li, Y. (2017). "Experimental Study on Burning Behaviors and Thermal Radiative Penetration of Thin-layer Burning". Journal of Thermal Analysis and Calorimetry.130: 1153–1162.
  2. Inamura, T.; Saito, K.; Tagavi, K.A. (1992). "A Study of Boilover in Liquid Pool Fires Supported on Water. Part II: Effects of In-depth Radiation Absorption". Combustion Science and Technology . 86: 105–119. doi : 10.1080/00102209208947190.
  3. Suo-Anttila, J.M.; Blanchat, T.K.; Ricks, A.J.; Brown, A.L. (2008). "Characterization of Thermal Radiation Spectra in 2 m Pool Fires", Proceedings of the Combustion Institute . 32(2): 2567–2574.
  4. Sikanen, T.; Hostikka, S. (2016). "Modeling and Simulation of Liquid Pool Fires with In-depth Radiation Absorption and Heat Transfer". Fire Safety Journal . 80: 95–109.
  5. Biswas, Samarendra Kumar; Mathur, Umesh; Hazra, Swapan Kumar (2021). Fundamentals of Process Safety Engineering. Boca Raton, Fla., etc.: CRC Press. p. 6. doi:10.1201/9781003107873. ISBN   9780367620769. S2CID   241591409.