This article needs additional citations for verification .(December 2022) |
An inerting system decreases the probability of combustion of flammable materials stored in a confined space. The most common such system is a fuel tank containing a combustible liquid, such as gasoline, diesel fuel, aviation fuel, jet fuel, or rocket propellant. After being fully filled, and during use, there is a space above the fuel, called the ullage, that contains evaporated fuel mixed with air, which contains the oxygen necessary for combustion. Under the right conditions this mixture can ignite. An inerting system replaces the air with a gas that cannot support combustion, such as nitrogen. [1] [2]
Three elements are required to initiate and sustain combustion in the ullage: an ignition source (heat), fuel, and oxygen. Combustion may be prevented by reducing any one of these three elements. In many cases there is no ignition source, e.g. storage tanks. If the presence of an ignition source can not be prevented, as is the case with most tanks that feed fuel to internal combustion engines, then the tank may be made non-ignitable by progressively adding an inert gas to the ullage as the fuel is consumed. At present carbon dioxide or nitrogen are used almost exclusively, although some systems use nitrogen-enriched air, or steam. Using these inert gases reduces the oxygen concentration of the ullage to below the combustion threshold.
Oil tankers fill the empty space above the oil cargo with inert gas to prevent fire or explosion of hydrocarbon vapors. Oil vapors cannot burn in air with less than 11% oxygen content. The inert gas may be supplied by cooling and scrubbing the flue gas produced by the ship's boilers. Where diesel engines are used, the exhaust gas may contain too much oxygen so fuel-burning inert gas generators may be installed. One-way valves are installed in process piping to the tanker spaces to prevent volatile hydrocarbon vapors or mist from entering other equipment. [3] Inert gas systems have been required on oil tankers since the SOLAS regulations of 1974. The International Maritime Organization (IMO) publishes technical standard IMO-860 describing the requirements for inert gas systems. Other types of cargo such as bulk chemicals may also be carried in inerted tanks, but the inerting gas must be compatible with the chemicals used.
Fuel tanks for combat aircraft have long been inerted, as well as being self-sealing, but those for military cargo aircraft and civilian transport category aircraft usually were not. Early applications using nitrogen were on the Handley Page Halifax III and VIII, Short Stirling, and Avro Lincoln B.II, which incorporated inerting systems from around 1944. [4] [5] [6]
Cleve Kimmel first proposed an inerting system to passenger airlines in the early 1960s. [7] His proposed system for passenger aircraft would have used nitrogen. However, the US Federal Aviation Administration (FAA) did not mandate installation of an inerting system at that time. Early versions of Kimmel's system weighed 2,000 pounds. The FAA focused on keeping ignition sources out of the fuel tanks.
The FAA did not formally propose lightweight inerting systems for commercial jets until the 1996 crash of TWA Flight 800, a Boeing 747. The crash was caused by an explosion in the center wing fuel tank. This tank is normally used only on very long flights, and little fuel was present in the tank at the time of the explosion. A small amount of fuel in a tank is more dangerous than a large amount, since it takes less heat to raise the temperature of the remaining fuel. This causes the ullage fuel-to-air ratio to increase and exceed the lower flammability limit. A small amount of fuel in the tank leaves pumps on the floor of the tank exposed to the air-fuel mixture, and an electric pump is a potential ignition source. The explosion of a Thai Airways International Boeing 737 in 2001 and a Philippine Airlines 737 in 1990 also occurred in tanks that had a small amount of residual fuel. These three explosions occurred on warm days, in the center wing tank (CWT) that is within the contours of the fuselage. These fuel tanks are located in the vicinity of external equipment that inadvertently heats the fuel tanks. The National Transportation Safety Board's (NTSB) final report on the crash of the TWA 747 concluded "The fuel air vapor in the ullage of the TWA flight 800 CWT was flammable at the time of the accident". NTSB identified "Elimination of Explosive Mixture in Fuel tanks in Transport Category Aircraft" as Number 1 item on its Most Wanted List in 1997.[ citation needed ]
After the TWA Flight 800 crash, a 2001 report by an FAA committee stated that U.S. airlines would have to spend US$35 billion to retrofit their existing aircraft fleets with inerting systems that might prevent such explosions. However, another FAA group developed a nitrogen-enriched air (NEA) based inerting system prototype that operated on compressed air supplied by the aircraft's propulsive engines. Also, the FAA determined that the fuel tank could be rendered inert by reducing the ullage oxygen concentration to 12% rather than the previously accepted threshold of 9 to 10%. Boeing commenced testing a derivative system of their own, performing successful test flights in 2003 with several Boeing 747 aircraft.
The new, simplified inerting system was originally suggested to the FAA through public comment. It uses a hollow fiber membrane material that separates supplied air into nitrogen-enriched air (NEA) and oxygen enriched air (OEA). [8] This technology is extensively used for generating oxygen-enriched air for medical purposes. It uses a membrane that preferentially allows the nitrogen molecule (molecular weight 28) to pass through it but not the oxygen molecule (molecular weight 32).
Unlike the inerting systems on military aircraft, this inerting system runs continuously to reduce fuel vapor flammability whenever the aircraft's engines are running. The goal is to reduce oxygen content within the fuel tank to 12%, lower than normal atmospheric oxygen content of 21%, but higher than that of inerted military aircraft fuel tanks, which have a target of 9% oxygen. Inerting in military aircraft is typically accomplished by ventilating fuel-vapor laden ullage gas out of the tank and into the atmosphere.
After what it said was seven years of investigation, the FAA proposed a rule in November 2005, in response to an NTSB recommendation, which would require airlines to "reduce the flammability levels of fuel tank vapors on the ground and in the air". This was a shift from the previous 40 years of policy in which the FAA focused only on reducing possible sources of ignition of fuel tank vapors.
The FAA issued the final rule on 21 July 2008. The rule amends regulations applicable to the design of new airplanes (14CFR§25.981), and introduces new regulations for continued safety (14CFR§26.31–39), Operating Requirements for Domestic Operations (14CFR§121.1117) and Operating Requirements for Foreign Air Carriers (14CFR§129.117). The regulations apply to airplanes certificated after 1 January 1958 of passenger capacity of 30 or more or payload capacity of greater than 7500 pounds. The regulations are performance based and do not require the implementation of a particular method.
The proposed rule would affect all future fixed-wing aircraft designs (passenger capacity greater than 30), and require a retrofit of more than 3,200 Airbus and Boeing aircraft with center wing fuel tanks, over nine years. The FAA had initially planned to also order installation on cargo aircraft, but this was removed from the order by the Bush administration. Additionally, regional jets and smaller commuter planes would not be subject to the rule, because the FAA does not consider them at high risk for a fuel-tank explosion. The FAA estimated the cost of the program at US$808 million over the next 49 years, including US$313 million to retrofit the existing fleet. It compared this cost to an estimated US$1.2 billion "cost to society" from a large airliner exploding in mid-air. The proposed rule came at a time when nearly half of the U.S. airlines' capacity was on carriers that were in bankruptcy. [9]
The order affects aircraft whose air conditioning units have a possibility of heating up what can be considered a normally empty center wing fuel tank. Some Airbus A320 and Boeing 747 aircraft are slated for "early action". Regarding new aircraft designs, the Airbus A380 does not have a center wing fuel tank and is therefore exempt, and the Boeing 787 has a fuel tank safety system that already complies with the proposed rule. The FAA has stated that there have been four fuel tank explosions in the previous 16 years—two on the ground, and two in the air—and that based on this statistic and on the FAA's estimate that one such explosion would happen every 60 million hours of flight time, about 9 such explosions will probably occur in the next 50 years. The inerting systems will probably prevent 8 of those 9 probable explosions, the FAA said. Before the inerting system rule was proposed, Boeing stated that it would install its own inerting system on airliners it manufactures beginning in 2005. Airbus had argued that its planes' electrical wiring made the inerting system an unnecessary expense.
As of 2009 [update] , the FAA had a pending rule to increase the standards of on board inerting systems again. New technologies are being developed by others to provide fuel tank inerting:
Another method in current use to inert fuel tanks is an ullage system. The FAA has decided that the added weight of an ullage system makes it impractical for implementation in the aviation field. [12] Some U.S. military aircraft still use nitrogen based foam inerting systems, and some companies will ship containers of fuel with an ullage system across rail transportation routes.
Trans World Airlines Flight 800 (TWA800) was a Boeing 747-100 that exploded and crashed into the Atlantic Ocean near East Moriches, New York on July 17, 1996 at approximately 8:31 p.m. EDT, 12 minutes after takeoff from John F. Kennedy International Airport, on a scheduled international passenger flight to Rome with a stopover in Paris. All 230 people on board died in the crash; it is the third-deadliest aviation accident in U.S. history. Accident investigators from the National Transportation Safety Board (NTSB) traveled to the scene, arriving the following morning amid speculation that a terrorist attack was the cause of the crash.
Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.
An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. The noble gases often do not react with many substances and were historically referred to as the inert gases. Inert gases are used generally to avoid unwanted chemical reactions degrading a sample. These undesirable chemical reactions are often oxidation and hydrolysis reactions with the oxygen and moisture in air. The term inert gas is context-dependent because several of the noble gases can be made to react under certain conditions.
RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (LH2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than LH2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.
A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.
Aviation fuels are petroleum-based fuels, or petroleum and synthetic fuel blends, used to power aircraft. They have more stringent requirements than fuels used for ground use, such as heating and road transport, and contain additives to enhance or maintain properties important to fuel performance or handling. They are kerosene-based for gas turbine-powered aircraft. Piston-engined aircraft use leaded gasoline and those with diesel engines may use jet fuel (kerosene). By 2012, all aircraft operated by the U.S. Air Force had been certified to use a 50-50 blend of kerosene and synthetic fuel derived from coal or natural gas as a way of stabilizing the cost of fuel.
Cryogenic fuels are fuels that require storage at extremely low temperatures in order to maintain them in a liquid state. These fuels are used in machinery that operates in space where ordinary fuel cannot be used, due to the very low temperatures often encountered in space, and the absence of an environment that supports combustion. Cryogenic fuels most often constitute liquefied gases such as liquid hydrogen.
A fuel tank is a safe container for flammable fluids, often gasoline or diesel fuel. Though any storage tank for fuel may be so called, the term is typically applied to part of an engine system in which the fuel is stored and propelled or released into an engine. Fuel tanks range in size and complexity from the small plastic tank of a butane lighter to the multi-chambered cryogenic Space Shuttle external tank.
Cabin pressurization is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft in order to create a safe and comfortable environment for humans flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic, tanks. The air is cooled, humidified, and mixed with recirculated air by one or more environmental control systems before it is distributed to the cabin.
Pan Am Flight 214 was a scheduled flight of Pan American World Airways from Isla Verde International Airport in San Juan, Puerto Rico, to Friendship Airport near Baltimore, and then to Philadelphia International Airport. On December 8, 1963, the Boeing 707-121 serving the flight crashed near Elkton, Maryland, while flying from Baltimore to Philadelphia, after being hit by lightning. All 81 occupants of the plane were killed. The crash was Pan Am's first fatal accident with the 707, which it had introduced to its fleet five years earlier.
A flash fire is a sudden, intense fire caused by ignition of a mixture of air and a dispersed flammable substance such as a solid, flammable or combustible liquid, or a flammable gas. It is characterized by high temperature, short duration, and a rapidly moving flame front.
Mixtures of dispersed combustible materials and oxygen in the air will burn only if the fuel concentration lies within well-defined lower and upper bounds determined experimentally, referred to as flammability limits or explosive limits. Combustion can range in violence from deflagration through detonation.
Philippine Airlines Flight 143 (PR143) was a domestic flight from the Manila Ninoy Aquino Airport, Manila, Philippines to Mandurriao Airport, Iloilo City. On May 11, 1990, at Manila Ninoy Aquino International Airport the Boeing 737-300 assigned to the route suffered an explosion in the central fuel tank and was consumed by fire in as little as four minutes. This accident marked the first hull loss of a 737-300.
The limiting oxygen concentration (LOC), also known as the minimum oxygen concentration (MOC), is defined as the limiting concentration of oxygen below which combustion is not possible, independent of the concentration of fuel. It is expressed in units of volume percent of oxygen. The LOC varies with pressure and temperature. It is also dependent on the type of inert (non-flammable) gas.
Flammability diagrams show the control of flammability in mixtures of fuel, oxygen and an inert gas, typically nitrogen. Mixtures of the three gasses are usually depicted in a triangular diagram, known as a ternary plot. Such diagrams are available in the speciality literature. The same information can be depicted in a normal orthogonal diagram, showing only two substances, implicitly using the feature that the sum of all three components is 100 percent. The diagrams below only concerns one fuel; the diagrams can be generalized to mixtures of fuels.
Thai Airways International Flight 114, a Thai Airways International Boeing 737-400 bound for Chiang Mai from Don Mueang Airport in Bangkok, was destroyed by an explosion of the center fuel tank resulting from ignition of the flammable fuel/air mixture in the tank while the aircraft was parked prior to boarding on the ground on 3 March 2001. The source of the ignition energy for the explosion could not be determined with certainty, but the most likely source was an explosion originating at the center wing tank pump as a result of running the pump in the presence of metal shavings and a fuel/air mixture. One flight attendant died.
Aircraft fuel tanks are a major component of aircraft fuel systems. They can be classified into internal or external fuel tanks and can be further classified by method of construction or intended use. Safety aspects of aircraft fuel tanks were examined during the investigation of the 1996 TWA Flight 800 in-flight explosion accident.
In fire and explosion prevention engineering, purging refers to the introduction of an inert purge gas into a closed system to prevent the formation of an ignitable atmosphere. Purging relies on the principle that a combustible gas is able to undergo combustion (explode) only if mixed with air in the right proportions. The flammability limits of the gas define those proportions, i.e. the ignitable range.
In fire and explosion prevention engineering, inerting refers to the introduction of an inert (non-combustible) gas into a closed system to make a flammable atmosphere oxygen deficient and non-ignitable.
Aircraft engine performance refers to factors including thrust or shaft power for fuel consumed, weight, cost, outside dimensions and life. It includes meeting regulated environmental limits which apply to emissions of noise and chemical pollutants, and regulated safety aspects which require a design that can safely tolerate environmental hazards such as birds, rain, hail and icing conditions. It is the end product that an engine company sells.