Ullage

Last updated

Ullage or headspace is the unfilled space in a container, particularly with a liquid. [1]

Contents

Etymology

The word ullage comes from the Latin word oculus, used by the Romans to refer to a barrel cork hole. This word was, in turn, taken in medieval French as oeil, from which a verb ouiller was created, meaning to fill a barrel to full capacity. Around 1300, the word ouillage was created by the Normans to refer to the amount of liquid needed to fill a barrel to capacity.

Alcoholic beverages

In winemaking, ullage came to refer to any amount by which a barrel is unfilled, perhaps because some of the contents have been used. It is also applied to the unfilled air space at the top of a bottle of wine, which in this case is essential to allow for expansion of the contents as the temperature changes.

By further extension, in brewing and beer retail, ullage is the residue of beer left in a barrel that has been emptied. When calculating tax returns and the like, licensed premises owners, landlords or managers can factor in the duty on ullage, or unavoidable barrel wastage. [2] Ullage therefore has come to be used as a general term, in the licensed trade, for waste beer whether at the barrel or at the bar tap or pump. However, what customers leave in their glasses does not count as ullage, because it has been sold.[ citation needed ]

Rocketry

Three sets of ullage motors are shown in this schematic of the Saturn V rocket. Saturn v schematic.svg
Three sets of ullage motors are shown in this schematic of the Saturn V rocket.

Liquid propellant rockets and spacecraft store their propellants in tanks. Cryogenic tanks are never completely filled, to prevent severe pressure drop in the tank after engine start. On the ground, or in the continued gravitational field of Earth during rocket-propelled ascent, the space between the top of the propellant load and the top of the tank is known as "ullage space". Ullage pressure is a critical measurable during powered rocket flight, because it affects tank structural integrity and engine net positive suction head (NPSH).[ citation needed ]

In the weightless condition in space without engine thrust, empty space occurs in partially-filled tanks, and the ullage space becomes distributed across much of the tank in a heterogenous mixture of masses of liquid amidst many gaseous regions. Under these conditions, liquid floats away from the engine intake, which is undesirable for stable engine operation. [3]

The application of a small force, from a small rocket engine for example, are sometimes used to provide sufficient acceleration to reaggregate (settle) the liquid propellant at the bottom of the tank near the engine propellant inlet prior to ignition of the main engine(s). Engines devoted to this single purpose are typically called ullage motors. [4] [5]

Reaction control system thrusters are also often used to settle propellants prior to reignition of a liquid propellant engine in space.[ citation needed ]

Industrial use

Ullage is also widely used in industrial or marine settings to describe the empty space in large tanks or holds used to store or carry liquids or bulk solids such as grain. [6] In accordance with IMO regulations, the Code of Federal Regulations, and the ABS Rules for Steel Vessels, certain pressurized tanks on steel ships may not be filled greater than 98% full, although there are exceptions. This is so that the pressure relief valve is always in contact with a gas or vapor. Certain pressure relief valves for chemical use are not designed to relieve the pressure when in contact with liquids.[ citation needed ]

In some cases, the ullage in a ship's hold can be relevant to stability; liquid or dry bulk cargo in a part-filled hold can shift asymmetrically towards one side as the ship heels to one side and the other, reducing the margin of stability when compared with a full hold. Excessive ullage in a tank may contribute to the free surface effect. When referring to the free surface effect, the condition of a tank that is not full is described as a "slack tank", while a full tank is "pressed up". [7]

Related Research Articles

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages that has been in use since 1962. It is currently produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V has been developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

<span class="mw-page-title-main">S-IVB</span> Third stage on the Saturn V and second stage on the Saturn IB

The S-IVB was the third stage on the Saturn V and second stage on the Saturn IB launch vehicles. Built by the Douglas Aircraft Company, it had one J-2 rocket engine. For lunar missions it was fired twice: first for Earth orbit insertion after second stage cutoff, and then for translunar injection (TLI).

<span class="mw-page-title-main">Launch pad</span> Facility from which rockets are launched

A launch pad is an above-ground facility from which a rocket-powered missile or space vehicle is vertically launched. The term launch pad can be used to describe just the central launch platform, or the entire complex. The entire complex will include a launch mount or launch platform to physically support the vehicle, a service structure with umbilicals, and the infrastructure required to provide propellants, cryogenic fluids, electrical power, communications, telemetry, rocket assembly, payload processing, storage facilities for propellants and gases, equipment, access roads, and drainage.

<span class="mw-page-title-main">AS-203</span> Uncrewed flight of the Saturn IB rocket, July 5, 1966

AS-203 was an uncrewed flight of the Saturn IB rocket on July 5, 1966. It carried no command and service module, as its purpose was to verify the design of the S-IVB rocket stage restart capability that would later be used in the Apollo program to boost astronauts from Earth orbit to a trajectory towards the Moon. It achieved its objectives, but the stage was inadvertently destroyed after four orbits.

<span class="mw-page-title-main">RP-1</span> Highly refined form of kerosene used as rocket fuel

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (H2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than H2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

<span class="mw-page-title-main">Saturn I SA-5</span> Apollo program test launch

Saturn-Apollo 5 (SA-5) was the first launch of the Block II Saturn I rocket and was part of the Apollo program. In 1963, President Kennedy identified this launch as the one which would place US lift capability ahead of the Soviets, after being behind for more than six years since Sputnik.

<span class="mw-page-title-main">Multistage rocket</span> Most common type of rocket, used to launch satellites

A multistage rocket or step rocket is a launch vehicle that uses two or more rocket stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

<span class="mw-page-title-main">Space Shuttle external tank</span> Component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">Pressure-fed engine</span> Rocket engine operation method

The pressure-fed engine is a class of rocket engine designs. A separate gas supply, usually helium, pressurizes the propellant tanks to force fuel and oxidizer to the combustion chamber. To maintain adequate flow, the tank pressures must exceed the combustion chamber pressure.

<span class="mw-page-title-main">Ullage motor</span> Small rocket engines that help fuel settle in 0g before main engine start

Ullage motors are relatively small, independently fueled rocket engines that may be fired prior to main engine ignition, when the vehicle is in a zero-g situation. The resulting acceleration causes liquid in the rocket's main tanks to settle towards the aft end, ensuring uninterrupted flow to the fuel and oxidizer pumps.

<span class="mw-page-title-main">Atlas-Centaur</span> Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida. After a strenuous flight test program, Atlas-Centaur went on to launch several crucial spaceflight missions for the United States, including Surveyor 1, Mariner 4, and Pioneer 10/11. The vehicle would be continuously developed and improved into the 1990s, with the last direct descendant being the highly successful Atlas II.

<span class="mw-page-title-main">Modular rocket</span> Rocket with interchangeable components

A modular rocket is a kind of multistage rocket which has components that can interchanged for different missions. Several such rockets use similar concepts such as unified modules to minimize expenses on manufacturing, transportation and for optimization of support infrastructure for flight preparations.

A parking orbit is a temporary orbit used during the launch of a spacecraft. A launch vehicle boosts into the parking orbit, then coasts for a while, then fires again to enter the final desired trajectory. The alternative to a parking orbit is direct injection, where the rocket fires continuously until its fuel is exhausted, ending with the payload on the final trajectory. The technique was first used by the Soviet Venera 1 mission to Venus in 1961.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

The Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">Titan II GLV</span> Expendable launch system

The Titan II GLV or Gemini-Titan II was an American expendable launch system derived from the Titan II missile, which was used to launch twelve Gemini missions for NASA between 1964 and 1966. Two uncrewed launches followed by ten crewed ones were conducted from Launch Complex 19 at the Cape Canaveral Air Force Station, starting with Gemini 1 on April 8, 1964.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

<span class="mw-page-title-main">Autogenous pressurization</span> Use of self-generated gaseous propellant

Autogenous pressurization is the use of self-generated gaseous propellant to pressurize liquid propellant in rockets. Traditional liquid-propellant rockets have been most often pressurized with other gases, such as helium, which necessitates carrying the pressurant tanks along with the plumbing and control system to use it. Autogenous pressurization has been operationally used on the Titan 34D, Space Shuttle, Space Launch System, and Starship. Autogenous pressurization is planned to be used on the New Glenn, Terran 1 and Rocket Lab's Neutron rocket.

References

  1. Soroka, W. Illustrated Glossary of Packaging Terminology (Second ed.). Institute of Packaging Professionals. Archived from the original on 2011-01-29. Retrieved 2011-09-14.
  2. "BEER3880 - Beer Guidance - HMRC internal manual - GOV.UK". gov.uk. Retrieved 11 December 2018.
  3. Grayson, G. D. (2003). "Computational Design Approach to Propellant Settling". Journal of Spacecraft and Rockets. 40 (2): 193–200. Bibcode:2003JSpRo..40..193G. doi:10.2514/2.3953.
  4. Teitel, Amy Shira (2020-06-28). "What is the Ullage Rockets on Saturn V?". Archived from the original on 2021-01-06. Retrieved 2021-01-06.
  5. Gille, J. P.; Gluck, D. F. (1965). "Fluid Mechanics of Zero-G Propellant Transfer in Spacecraft Propulsion Systems". Journal of Engineering for Industry. 87: 1–8. doi:10.1115/1.3670751.
  6. Coast Guard Baltimore MD Field Testing and Development Center: Grain ullages
  7. Ship inspection maritime guide.

Bibliography