A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.
The degree of flammability in air depends largely upon the volatility of the material - this is related to its composition-specific vapour pressure, which is temperature dependent. The quantity of vapour produced can be enhanced by increasing the surface area of the material forming a mist or dust. Take wood as an example. Finely divided wood dust can undergo explosive flames and produce a blast wave. A piece of paper (made from wood) catches on fire quite easily. A heavy oak desk is much harder to ignite, even though the wood fibre is the same in all three materials.
Common sense (and indeed scientific consensus until the mid-1700s) would seem to suggest that material "disappears" when burned, as only the ash is left. Further scientific research has found that conservation of mass holds for chemical reactions. Antoine Lavoisier, one of the pioneers in these early insights, stated: "Nothing is lost, nothing is created, everything is transformed." The burning of a solid material may appear to lose weight if the mass of combustion gases (such as carbon dioxide and water vapor) are not taken into account. The original mass of flammable material and the mass of the oxygen consumed (typically from the surrounding air) equals the mass of the flame products (ash, water, carbon dioxide, and other gases). Lavoisier used the experimental fact that some metals gained mass when they burned to support his ideas (because those chemical reactions capture oxygen atoms into solid compounds rather than gaseous water).
Historically, flammable, inflammable and combustible meant capable of burning. [1] The word "inflammable" came through French from the Latin inflammāre = "to set fire to", where the Latin preposition "in-" [2] means "in" as in "indoctrinate", rather than "not" as in "invisible" and "ineligible".
The word "inflammable" may be erroneously thought to mean "non-flammable". [3] The erroneous usage of the word "inflammable" is a significant safety hazard. Therefore, since the 1950s, efforts to put forward the use of "flammable" in place of "inflammable" were accepted by linguists, and it is now the accepted standard in American English and British English. [4] [5] Antonyms of "flammable" or "inflammable" include: non-flammable, non-inflammable, incombustible, non-combustible, not flammable, and fireproof.
Flammable applies to combustible materials that ignite easily and thus are more dangerous and more highly regulated. Less easily ignited less-vigorously burning materials are combustible. For example, in the United States flammable liquids, by definition, have a flash point below 100 °F (38 °C)—where combustible liquids have a flash point above 100 °F (38 °C). Flammable solids are solids that are readily combustible, or may cause or contribute to fire through friction. Readily combustible solids are powdered, granular, or pasty substances that easily ignite by brief contact with an ignition source, such as a burning match, and spread flame rapidly. [6] The technical definitions vary between countries so the United Nations created the Globally Harmonized System of Classification and Labeling of Chemicals, which defines the flash point temperature of flammable liquids as between 0 and 140 °F (60 °C) and combustible liquids between 140 °F (60 °C) and 200 °F (93 °C). [6]
Flammability is the ease with which a combustible substance can be ignited, causing fire or combustion or even an explosion. The degree of difficulty required to cause the combustion of a substance is quantified through fire testing. Internationally, a variety of test protocols exist to quantify flammability. The ratings achieved are used in building codes, insurance requirements, fire codes and other regulations governing the use of building materials as well as the storage and handling of highly flammable substances inside and outside of structures and in surface and air transportation. For instance, changing an occupancy by altering the flammability of the contents requires the owner of a building to apply for a building permit to make sure that the overall fire protection design basis of the facility can take the change into account.
Globally Harmonized System of Classification and Labelling of Chemicals uses a four category system to classify flammable liquids using flash point and boiling point temperature. [7] [8] This system is used internationally to evaluate and sort substances in industrial applications, workplaces and products distributed to consumers.
Category | Category 1 | Category 2 | Category 3 | Category 4 |
---|---|---|---|---|
Flash Point | <23.0 °C (73.4 °F) | <23.0 °C (73.4 °F) | ≥23.0 °C (73.4 °F) - ≤60 °C (140 °F) | >60 °C (140 °F) - ≤93.0 °C (199.4 °F) |
Boiling Point | ≤35 °C (95 °F) | >35 °C (95 °F) | — | — |
Example Liquids | Gasoline (Petrol), Diethyl ether | Ethanol, Isopropyl alcohol | Kerosene, 1-Butanol | Diesel fuel, Formic acid |
GHS Signal Word and Hazard Statement | Danger - Extremely flammable liquid and vapor | Danger - Highly flammable liquid and vapor | Warning - Flammable liquid and vapor | Warning - Combustible liquid |
Prior to 2012, OSHA's classification of flammable and combustible liquids in regulation 1910.106, was nearly identical to the National Fire Protective Association (NFPA) Flammable and Combustible Liquids Code, NFPA 30. [a] [9] While no longer used for occupational regulations, NFPA 30's definitions are still commonly used in fire codes and NFPA codes and standards.
Class | I-A | I-B | I-C | II | III-A | III-B |
---|---|---|---|---|---|---|
Flammable | Combustible | |||||
Flash Point | <22.8 °C (73.0 °F) | <22.8 °C (73.0 °F) | ≥22.8 °C (73.0 °F) - <37.8 °C (100.0 °F) | ≥37.8 °C (100.0 °F) - ≤60 °C (140 °F) | ≥60 °C (140 °F) - <200 °F (93 °C) | ≥200 °F (93 °C) |
Boiling Point | <37.8 °C (100.0 °F) | ≥37.8 °C (100.0 °F) | — | — | — | — |
Example Liquids | Gasoline (Petrol), Diethyl ether | Ethanol, Isopropyl alcohol | Butyl alcohol, Turpentine | Diesel fuel, Mineral spirits | Fuel oil, Formic acid | Olive oil, oil based paints |
Other systems for classifications of flammable liquids exist for more specialist applications, such as NFPA 704, which uses five categories, intended for emergency workers to understand the hazard posed by a substance during an emergency, such as a spill. [10] In addition to GHS, flammability classifications are incorporated into various systems designed for communicating physical and health hazards in workplaces; such as American Coatings Association's Hazardous Materials Identification System (HMIS) and Lab Safety Supply's Hazardous Material Identification Guide (HMIG). [11]
Flammable substances include, but are not limited to:
Flammability of furniture is of concern as cigarettes and candle accidents can trigger domestic fires. In 1975, California began implementing Technical Bulletin 117 (TB 117), which required that materials such as polyurethane foam used to fill furniture be able to withstand a small open flame, equivalent to a candle, for at least 12 seconds. [12] In polyurethane foam, furniture manufacturers typically meet TB 117 with additive halogenated organic flame retardants. No other U.S. states had similar standards, but because California has such a large market, manufacturers meet TB 117 in products that they distribute across the United States. The proliferation of flame retardants, and especially halogenated organic flame retardants, in furniture across the United States is strongly linked to TB 117. When it became apparent that the risk-benefit ratio of this approach was unfavorable and industry had used falsified documentation (i.e. see David Heimbach) for the use of flame retardants, California modified TB 117 to require that fabric covering upholstered furniture meet a smolder test replacing the open flame test. [13] Gov. Jerry Brown signed the modified TB117-2013, which became effective in 2014. [14]
Lightweight textiles with porous surfaces are the most flammable fabrics. [15] Wool is less flammable than cotton, linen, silk, or viscose (rayon). [15] [16] Polyester and nylon resist ignition, and melt rather than catch fire. [15] [16] Acrylic is the most flammable synthetic fiber. [15]
A fire test can be conducted to determine the degree of flammability. Test standards used to make this determination but are not limited to the following:
Combustibility is a measure of how easily a substance bursts into flame, through fire or combustion. This is an important property to consider when a substance is used for construction or is being stored. It is also important in processes that produce combustible substances as a by-product. Special precautions are usually required for substances that are easily combustible. These measures may include installation of fire sprinklers or storage remote from possible sources of ignition.
Substances with low combustibility may be selected for construction where the fire risk must be reduced, such as apartment buildings, houses, or offices. If combustible resources are used there is greater chance of fire accidents and deaths. Fire resistant substances are preferred for building materials and furnishings.
A non-combustible material [17] is a substance that does not ignite, burn, support combustion, or release flammable vapors when subject to fire or heat, in the form in which it is used and under conditions anticipated. Any solid substance complying with either of two sets of passing criteria listed in Section 8 of ASTM E 136 when the substance is tested in accordance with the procedure specified in ASTM E 136 is considered to be non-combustible. [18]
A number of industrial processes produce combustible dust as a by-product. The most common being wood dust. Combustible dust has been defined as: a solid material composed of distinct particles or pieces, regardless of size, shape, or chemical composition, which presents a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations. [19] In addition to wood, combustible dusts include metals, especially magnesium, titanium and aluminum, as well as other carbon-based dusts. [19] There are at least 140 known substances that produce combustible dust. [20] : 38 [21] While the particles in a combustible dusts may be of any size, normally they have a diameter of less than 420 μm. [19] [b] As of 2012 [update] , the United States Occupational Safety and Health Administration has yet to adopt a comprehensive set of rules on combustible dust. [22]
When suspended in air (or any oxidizing environment), the fine particles of combustible dust present a potential for explosions. Accumulated dust, even when not suspended in air, remains a fire hazard. The National Fire Protection Association (U.S.) specifically addresses the prevention of fires and dust explosions in agricultural and food products facilities in NFPA Code section 61, [23] and other industries in NFPA Code sections 651–664. [c] Collectors designed to reduce airborne dust account for more than 40 percent of all dust explosions. [24] Other important processes are grinding and pulverizing, transporting powders, filing silos and containers (which produces powder), and the mixing and blending of powders. [25]
Investigation of 200 dust explosions and fires, between 1980 and 2005, indicated approximately 100 fatalities and 600 injuries. [20] : 105–106 In January 2003, a polyethylene powder explosion and fire at the West Pharmaceutical Services plant in Kinston, North Carolina resulted in the deaths of six workers and injuries to 38 others. [20] : 104 In February 2008 an explosion of sugar dust rocked the Imperial Sugar Company's plant at Port Wentworth, Georgia, [26] resulting in thirteen deaths. [27]
A material's flash point is a metric of how easy it is to ignite the vapor of the material as it evaporates into the atmosphere. It is defined as the lowest material temperature required for fuel oils in the materials to begin to give off flammable vapors in the quantity high enough to support a flash of fire when ignited by an external source. [28] A lower flash point indicates higher flammability. Materials with flash points below 100 °F (38 °C ) are regulated in the United States by OSHA as potential workplace hazards.
The flame point of a material is a temperature value at which sustained flame can be supported on the material once ignited by an external source. [28] Once the flame point of a material is reached, it produces enough fuel vapors or oils to support continuous burning.
The lower flammability limit or lower explosive limit (LFL/LEL) represents the lowest air to fuel vapor concentration required for combustion to take place when ignited by an external source, for any particular chemical. [29] Any concentration lower than this could not produce a flame or result in combustion. The upper flammability limit or upper explosive limit (UFL/UEL) represents the highest air to fuel vapor concentration at which combustion can take place when ignited by an external source. [29] Any fuel-air mixture higher than this would be too concentrated to result in combustion. The values existing between these two limits represent the flammable or explosive range. Within this threshold, give an external ignition source, combustion of the particular fuel would likely happen.
The vapor pressure of a liquid, which varies with its temperature, is a measure of how much the vapor of the liquid tends to concentrate in the surrounding atmosphere as the liquid evaporates. [30] Vapor pressure is a major determinant of the flash point and flame point, with higher vapor pressures leading to lower flash points and higher flammability ratings.
The International Code Council (ICC) developed fire code requirements to provide adequate protection to the building and occupants. [31] These codes specify the combustibility rating for materials, the entrance and exit requirements, as well as active fire protection requirements, along with numerous other things. In the U.S. other agencies have also developed building codes that specify combustibility ratings such as state and/or county governing bodies. Following the requirements of these fire codes are crucial for higher occupancy buildings.
For existing buildings, fire codes focus on maintaining the occupancies as originally intended. In other words, if a portion of a building were designed as an apartment, one could not suddenly load it with flammable liquids and turn it into a gas storage facility, because the fire load and smoke development in that one apartment would be so immense as to overtax the active fire protection as well as the passive fire protection means for the building. The handling and use of flammable substances inside a building is subject to the local fire code, which is ordinarily enforced by the local fire prevention officer.
For an Authority Having Jurisdiction, combustibility is defined by the local code. In the National Building Code of Canada, it is defined as follows:
BS 476-4:1970 defines a test for combustibility in which a technician heats three specimens of a material in a furnace. Combustibile materials are those for which any of the three specimens either:
Otherwise, the material is classified as non-combustible.
Various countries have tests for determining non-combustibility of materials. Most involve the heating of a specified quantity of the test specimen for a set duration. Usually, the material must not support combustion and must not lose more than a certain amount of mass. As a general rule of thumb, concrete, steel, and ceramics - in other words inorganic substances - pass these tests, so building codes list them as suitable and sometimes even mandate their use in certain applications. In Canada, for instance, firewalls must be made of concrete.
Materials can be tested for the degree of flammability and combustibility in accordance with the German DIN 4102. DIN 4102, as well as its British cousin BS 476 include for testing of passive fire protection systems, as well as some of its constituent materials.
The following are the categories in order of degree of combustibility and flammability:
Rating | Degree of flammability | Examples |
---|---|---|
A1 | 100% noncombustible (nicht brennbar) | |
A2 | ≈98% noncombustible (nicht brennbar) | |
B1 | Difficult to ignite (schwer entflammbar) | intumescents and some high end silicones |
B2 | Normal combustibility | wood |
B3 | Easily ignited (leicht entflammbar) | polystyrene |
A more recent industrial standard is the European EN 13501-1 - Fire classification of construction products and building elements—which roughly replaces A2 with A2/B, B1 with C, B2 with D/E and B3 with F.
B3 or F rated materials may not be used in building unless combined with another material that reduces the flammability of those materials.
The flash point of a material is the "lowest liquid temperature at which, under certain standardized conditions, a liquid gives off vapours in a quantity such as to be capable of forming an ignitable vapour/air mixture".
The autoignition temperature or self-ignition temperature, often called spontaneous ignition temperature or minimum ignition temperature and formerly also known as kindling point, of a substance is the lowest temperature at which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to supply the activation energy needed for combustion. The temperature at which a chemical ignites decreases as the pressure is increased.
Fire safety is the set of practices intended to reduce destruction caused by fire. Fire safety measures include those that are intended to prevent the ignition of an uncontrolled fire and those that are used to limit the spread and impact of a fire.
"NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response" is a standard maintained by the U.S.-based National Fire Protection Association. First "tentatively adopted as a guide" in 1960, and revised several times since then, it defines the "Safety Square" or "Fire Diamond" which is used to quickly and easily identify the risks posed by hazardous materials. This helps determine what, if any, special equipment should be used, procedures followed, or precautions taken during the initial stages of an emergency response. It is an internationally accepted safety standard, and is crucial while transporting chemicals.
A flash fire is a sudden, intense fire caused by ignition of a mixture of air and a dispersed flammable substance such as a solid, flammable or combustible liquid, or a flammable gas. It is characterized by high temperature, short duration, and a rapidly moving flame front.
In electrical and safety engineering, hazardous locations are places where fire or explosion hazards may exist. Sources of such hazards include gases, vapors, dust, fibers, and flyings, which are combustible or flammable. Electrical equipment installed in such locations can provide an ignition source, due to electrical arcing, or high temperatures. Standards and regulations exist to identify such locations, classify the hazards, and design equipment for safe use in such locations.
Mixtures of dispersed combustible materials and oxygen in the air will burn only if the fuel concentration lies within well-defined lower and upper bounds determined experimentally, referred to as flammability limits or explosive limits. Combustion can range in violence from deflagration through detonation.
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an internationally agreed-upon standard managed by the United Nations that was set up to replace the assortment of hazardous material classification and labelling schemes previously used around the world. Core elements of the GHS include standardized hazard testing criteria, universal warning pictograms, and safety data sheets which provide users of dangerous goods relevant information with consistent organization. The system acts as a complement to the UN numbered system of regulated hazardous material transport. Implementation is managed through the UN Secretariat. Although adoption has taken time, as of 2017, the system has been enacted to significant extents in most major countries of the world. This includes the European Union, which has implemented the United Nations' GHS into EU law as the CLP Regulation, and United States Occupational Safety and Health Administration standards.
The Hazardous Materials Identification System (HMIS) is a proprietary numerical hazard rating that incorporates the use of labels with color bars developed by the American Coatings Association as a compliance aid for the OSHA Hazard Communication (HazCom) Standard. The name and abbreviation is a trademark of the American Coatings Association.
A fire class is a system of categorizing fire with regard to the type of material and fuel for combustion. Class letters are often assigned to the different types of fire, but these differ between territories; there are separate standards for the United States, Europe (DIN EN2 Classification of fires ISO3941 Classification of fires, and Australia. The fire class is used to determine the types of extinguishing agents that can be used for that category.
Fire-retardant fabrics are textiles that are more resistant to fire than others through chemical treatment of flame-retardant or manufactured fireproof fibers.
Potassium nitrate is an oxidizer so storing it near fire hazards or reducing agents should be avoided to minimise risk in case of a fire.
A fire test is a means of determining whether fire protection products meet minimum performance criteria as set out in a building code or other applicable legislation. Successful tests in laboratories holding national accreditation for testing and certification result in the issuance of a certification listing.
A dust explosion is the rapid combustion of fine particles suspended in the air within an enclosed location. Dust explosions can occur where any dispersed powdered combustible material is present in high-enough concentrations in the atmosphere or other oxidizing gaseous medium, such as pure oxygen. In cases when fuel plays the role of a combustible material, the explosion is known as a fuel-air explosion.
The West Pharmaceutical Plant explosion was an industrial disaster that occurred on January 29, 2003, at the West Pharmaceutical Plant in Kinston, North Carolina, United States. Six people were killed and thirty-six people were injured when a large explosion ripped through the facility. Two firefighters were injured in the subsequent blaze. The disaster occurred twelve years and 170 miles (270 km) from the 1991 Hamlet chicken processing plant fire, North Carolina's second-worst industrial disaster.
A flammable liquid is a liquid with flash point of not more than 60.5 °C (141 °F), or any material in a liquid phase with a flash point at or above 37.8 °C (100 °F) that is intentionally heated and offered for transportation or transported at or above its flash point in a bulk packaging.
Hydrogen safety covers the safe production, handling and use of hydrogen, particularly hydrogen gas fuel and liquid hydrogen. Hydrogen possesses the NFPA 704's highest rating of four on the flammability scale because it is flammable when mixed even in small amounts with ordinary air. Ignition can occur at a volumetric ratio of hydrogen to air as low as 4% due to the oxygen in the air and the simplicity and chemical properties of the reaction. However, hydrogen has no rating for innate hazard for reactivity or toxicity. The storage and use of hydrogen poses unique challenges due to its ease of leaking as a gaseous fuel, low-energy ignition, wide range of combustible fuel-air mixtures, buoyancy, and its ability to embrittle metals that must be accounted for to ensure safe operation.
Flame spread, or surface burning characteristics rating, is a ranking derived by laboratory standard test methodology of a material's propensity to burn rapidly and spread flames. There are several standardized methods of determining flame spread,
In fire classes, a Class B fire is a fire in flammable liquids or flammable gases, petroleum greases, tars, oils, oil-based paints, solvents, lacquers, or alcohols. For example, propane, natural gas, gasoline and kerosene fires are types of Class B fires. The use of lighter fluid on a charcoal grill, for example, creates a Class B fire. Some plastics are also Class B fire materials.
In fire and explosion prevention engineering, inerting refers to the introduction of an inert (non-combustible) gas into a closed system to make a flammable atmosphere oxygen deficient and non-ignitable.
This article's use of external links may not follow Wikipedia's policies or guidelines.(December 2019) |