Water filter

Last updated
Water filters produced in Toledo, Ohio in 1895 out of terracotta History and Institutions- with illustrations and sketches of banking, wholesale manufacturing and professional interests of Toledo, Ohio - DPLA - 92f742d33d4dcde003ea49375198e699 (page 83) (cropped).jpg
Water filters produced in Toledo, Ohio in 1895 out of terracotta
A large-scale flocculation water filter Usine Bret MG 1643.jpg
A large-scale flocculation water filter

A water filter removes impurities by lowering contamination of water using a fine physical barrier, a chemical process, or a biological process. Filters cleanse water to different extents, for purposes such as: providing agricultural irrigation, accessible drinking water, public and private aquariums, and the safe use of ponds and swimming pools.

Contents

Methods of filtration

Filters use sieving, adsorption, ion exchanges, biofilms and other processes to remove unwanted substances from water. Unlike a sieve or screen, a filter can potentially remove particles much smaller than the holes through which its water passes, such as nitrates or germs like Cryptosporidium. [1]

Among the methods of filtration, notable examples are sedimentation, used to separate hard and suspended solids from water [2] and activated charcoal treatment, where, typically, boiled water is poured through a piece of cloth to trap undesired residuals. [3] Additionally, the use of machinery to work on desalinization and purification of water through the transposal of it into multiple-filtration water tanks is used. This technique is aimed at the filtration of water on bigger scales, such as serving entire cities. [2]

These three methods are particularly relevant, as they trace back centuries and are the base for many of the modern methods of filtration used today.

Types

Water treatment plant filters

Illustration of a slow sand filter Slow sand filter.jpg
Illustration of a slow sand filter

Types of water filters for municipal and other large treatment systems include media filters, screen filters, disk filters, slow sand filter beds, rapid sand filters, cloth filters, [4] and biological filters such as algae scrubbers. [5]

Point-of-use filters

Water purifier attached to a sink faucet WATER PURIFIER.jpg
Water purifier attached to a sink faucet

Point-of-use filters for home use include granular-activated carbon filters used for carbon filtering, depth filter, metallic alloy filters, microporous ceramic filters, carbon block resin, microfiltration and ultrafiltration membranes. Some filters use more than one filtration method. An example of this is a multi-barrier system. Jug filters can be used for small quantities of drinking water. Some kettles have built-in filters, primarily to reduce limescale build-up.

Portable water filters

Water filters are used by hikers, [6] aid organizations during humanitarian emergencies, and the military. These filters are usually small, portable and lightweight (1–2 lb (0.45–0.91 kg) or less). These usually filter water by working a mechanical hand pump, although some use a siphon drip system to force water through, while others are built into water bottles. Dirty water is pumped via a screen-filtered flexible silicon tube through a specialized filter, ending up in a container. These filters work to remove bacteria, protozoa and microbial cysts that can cause disease. Filters may have fine meshes that must be replaced or cleaned, and ceramic water filters must have its outside abraded when they have become clogged with impurities.

These water filters should not be confused with devices or tablets that disinfect water, which remove or kill viruses such as hepatitis A and rotavirus.

Ceramic water filters

Ceramic filters represent low-cost solutions to water filtration and are widely adhered to despite being one of the oldest methods of filtration. [7] These filters are found not only inside the homes of families but also used in industrial engineering (as high-temperature filters) for several processes. [8]

The conventional ceramic filters used for day-to-day water consumption, known as candle-type filters, work with gravity and a central candle, which makes the filtration process significantly long.

Water polishing

The term water polishing can refer to any process that removes small (usually microscopic) particulate material, or removes very low concentrations of dissolved material from water. The process and its meaning vary from setting to setting: a manufacturer of aquarium filters may claim that its filters perform water polishing by capturing "micro particles" within nylon or polyester pads, just as a chemical engineer can use the term to refer to the removal of magnetic resins from a solution by passing the solution over a bed of magnetic particulate. [9] In this sense, water polishing is simply another term for whole house water filtration systems. Polishing is also done on a large scale in water reclamation plants. [10]

History

4000 years ago, in India, Hindus devised the first drinking water standards. [11] Hindus heated dirty water by boiling it and exposing it to sunlight or dipping it seven times in hot pieces of copper, then filtering it through earthen vessels and cooling it. This was an enlightened procedure to obtain sterilized drinking water as well as to keep it aesthetically pleasing. This method was directed at individuals and households rather than for use as a community water source. In China, boiling water was found to reduce the spread of disease. To this day, hot water just below boiling point is typically served in Chinese restaurants. [12] [13]

2,000 years ago, Mayan drinking water filtration systems used crystalline quartz and zeolite. Both minerals are used in modern water filtration. "The filters would have removed harmful microbes, nitrogen-rich compounds, heavy metals such as mercury and other toxins from the water". [14]

The Egyptians reportedly used used alum to clarify water as early as 1500 BC. [15]

Persian engineer Al-Karaji (c.953 – c.1029) wrote a book, The Extraction of Hidden Waters, which gave an early description of a water filtration process. [16]

Until the invention of the microscope, the existence of microscopic life was undiscovered. More than 200 years passed before the microscope was invented and the relationship between microorganisms and disease became clear. In the mid-19th century, cholera was proven to be transmitted by contaminated water. In the late 19th century, Louis Pasteur's theory of the particulate pathogen finally established a causal relationship between microorganisms and disease. Filtration as a method of water purification was established in the 18th century, and the first municipal water treatment plant was built in Scotland in 1832. However, the aesthetic value of water was important at the time, and effective water quality standards did not exist until the late 19th century. [17]

During the 19th and 20th centuries, water filters for domestic water production were generally divided into slow sand filters and rapid sand filters (also called mechanical filters and American filters). While there were many small-scale water filtration systems prior to 1800, Paisley, Scotland is generally acknowledged as the first city to receive filtered water for an entire town. The Paisley filter began operation in 1804 and was an early type of slow sand filter. Throughout the 1800s, hundreds of slow sand filters were constructed in the UK and on the European continent. An intermittent slow sand filter was constructed and operated at Lawrence, Massachusetts in 1893 due to continuing typhoid fever epidemics caused by sewage contamination of the water supply. [18] The first continuously operating slow sand filter was designed by Allen Hazen for the city of Albany, New York in 1897. [19] The most comprehensive history of water filtration was published by Moses N. Baker in 1948 and reprinted in 1981. [18]

In the 1800s, mechanical filtration was an industrial process that depended on the addition of aluminium sulfate prior to the filtration process. The filtration rate for mechanical filtration was typically more than 60 times faster than slow sand filters, thus requiring significantly less land area. The first modern mechanical filtration plant in the U.S. was built at Little Falls, New Jersey, for the East Jersey Water Company. George W. Fuller designed and supervised the construction of the plant which went into operation in 1902. [20] In 1924, John R. Baylis developed a fixed grid backwash assist system, which consisted of pipes with nozzles that injected jets of water into the filter material during expansion. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Filtration</span> Process that separates solids from fluids

Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as oversize and the fluid that passes through is called the filtrate. Oversize particles may form a filter cake on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as blinding. The size of the largest particles that can successfully pass through a filter is called the effective pore size of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles. Filtration occurs both in nature and in engineered systems; there are biological, geological, and industrial forms. In everyday usage the verb "strain" is more often used; for example, using a colander to drain cooking water from cooked pasta.

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for human consumption, but water purification may also be carried out for a variety of other purposes, including medical, pharmacological, chemical, and industrial applications. The history of water purification includes a wide variety of methods. The methods used include physical processes such as filtration, sedimentation, and distillation; biological processes such as slow sand filters or biologically active carbon; chemical processes such as flocculation and chlorination; and the use of electromagnetic radiation such as ultraviolet light.

<span class="mw-page-title-main">Water treatment</span> Process that improves the quality of water

Water treatment is any process that improves the quality of water to make it appropriate for a specific end-use. The end use may be drinking, industrial water supply, irrigation, river flow maintenance, water recreation or many other uses, including being safely returned to the environment. Water treatment removes contaminants and undesirable components, or reduces their concentration so that the water becomes fit for its desired end-use. This treatment is crucial to human health and allows humans to benefit from both drinking and irrigation use.

<span class="mw-page-title-main">Media filter</span>

A media filter is a type of filter that uses a bed of sand, peat, shredded tires, foam, crushed glass, geo-textile fabric, anthracite, crushed granite or other material to filter water for drinking, swimming pools, aquaculture, irrigation, stormwater management, oil and gas operations, and other applications.

<span class="mw-page-title-main">Biofilter</span> Pollution control technique

Biofiltration is a pollution control technique using a bioreactor containing living material to capture and biologically degrade pollutants. Common uses include processing waste water, capturing harmful chemicals or silt from surface runoff, and microbiotic oxidation of contaminants in air. Industrial biofiltration can be classified as the process of utilizing biological oxidation to remove volatile organic compounds, odors, and hydrocarbons.

<span class="mw-page-title-main">Slow sand filter</span> Water purification device

Slow sand filters are used in water purification for treating raw water to produce a potable product. They are typically 1–2 m (3.3–6.6 ft) deep, can be rectangular or cylindrical in cross section and are used primarily to treat surface water. The length and breadth of the tanks are determined by the flow rate desired for the filters, which typically have a loading rate of 200–400 litres (0.20–0.40 m3) per square metre per hour.

<span class="mw-page-title-main">Sand filter</span> Water filtration device

Sand filters are used as a step in the water treatment process of water purification.

<span class="mw-page-title-main">Backwashing (water treatment)</span>

In terms of water treatment, including water purification and sewage treatment, backwashing refers to pumping water backwards through the filters media, sometimes including intermittent use of compressed air during the process. Backwashing is a form of preventive maintenance so that the filter media can be reused. In water treatment plants, backwashing can be an automated process that is run by local programmable logic controllers (PLCs). The backwash cycle is triggered after a set time interval, when the filter effluent turbidity is greater than a treatment guideline or when the differential pressure across the filter exceeds a set value.

<span class="mw-page-title-main">Rapid sand filter</span> Type of filter used in water purification

The rapid sand filter or rapid gravity filter is a type of filter used in water purification and is commonly used in municipal drinking water facilities as part of a multiple-stage treatment system. These systems are complex and expensive to operate and maintain, and therefore less suitable for small communities and developing nations.

<span class="mw-page-title-main">Portable water purification</span> Self-contained, easily transported units used to purify water from untreated sources

Portable water purification devices are self-contained, easily transported units used to purify water from untreated sources for drinking purposes. Their main function is to eliminate pathogens, and often also of suspended solids and some unpalatable or toxic compounds.

<span class="mw-page-title-main">Aquarium filter</span>

Aquarium filters are critical components of both freshwater and marine aquaria. Aquarium filters remove physical and soluble chemical waste products from aquaria, simplifying maintenance. Furthermore, aquarium filters are necessary to support life as aquaria are relatively small, closed volumes of water compared to the natural environment of most fish.

Depth filters are filters that use a porous filtration medium to retain particles throughout the medium, rather than just on the surface of the medium. Depth filtration, typified by multiple porous layers with depth, is used to capture the solid contaminants from the liquid phase. These filters are commonly used when the fluid to be filtered contains a high load of particles because, relative to other types of filters, they can retain a large mass of particles before becoming clogged.

Copper zinc water filtration is a high-purity brass water filtration process that relies on the redox potential of dissolved oxygen in water in the presence of a zinc anode and copper cathode. It uses dissolved impurities within water as constituent substrate, which are reduced to more physiologically inert compounds.

The history of water filters can be traced to the earliest civilisations with written records. Water filters have been used throughout history to improve the safety and aesthetics of water intended to be used for drinking or bathing. In modern times, they are also widely used in industry and commerce. The history of water filtration is closely linked with the broader history of improvements in public health.

Spa filters work continuously to keep debris and sediments from the water in a spa pool.

The development of water treatment and filtration technologies went through many stages. The greatest level of change came in the 19th century as the growth of cities forced the development of new methods for distributing and treating water and the problems of water contamination became more pronounced.

There are many water purifiers available in the market which use different techniques like boiling, filtration, distillation, chlorination, sedimentation and oxidation. Currently nanotechnology plays a vital role in water purification techniques. Nanotechnology is the process of manipulating atoms on a nanoscale. In nanotechnology, nanomembranes are used with the purpose of softening the water and removal of contaminants such as physical, biological and chemical contaminants. There are variety of techniques in nanotechnology which uses nanoparticles for providing safe drinking water with a high level of effectiveness. Some techniques have become commercialized.

<span class="mw-page-title-main">Jewell water filter</span>

A Jewell water filter was a system of sand filters for filtering and treating water for drinking purposes that made use of gravity to allow water to percolate through a column of sand inside cylindrical cisterns that was widely used in the early twentieth century. They are named after Omar Hestrian Jewell established Jewell Pure Water Company in Chicago in 1890 and managed later by two of his sons. Jewell water filters were used in many city water supply systems across the world and modified versions continue to be in use.

<span class="mw-page-title-main">Coppermills Water Treatment Works</span> Water treatment works in east London

The Coppermills Water Treatment Works is a large water treatment works in the Lea Valley in east London. Completed in 1969 by the Metropolitan Water Board, it is now owned and operated by Thames Water. In 2009, Coppermills was connected to the Thames Water Ring Main via the Northern Extension Tunnel, enabling the facility to be a major supplier of water to the whole London area. It is capable of supplying a maximum of 680 million litres of water per day.

Pile Cloth Media Filtration is a mechanical process for the separation of organic and inorganic solids from liquids. It belongs to the processes of surface filtration and cake filtration where, in addition to the sieve effect, real filtration effects occur over the depth of the pile layer. Pile Cloth Media Filtration represents a branch of cloth filtration processes and is used for water and wastewater treatment in medium and large scale. In Pile Cloth Media Filtration, three-dimensional textile fabrics are used as filter media. During the filter cleaning of the pile layer the filtration process continues and is not interrupted.

References

  1. "Choosing Home Water Filters & Other Water Treatment Systems | Drinking Water | Healthy Water". Centers for Disease Control and Prevention . 2021-02-08. Archived from the original on 2022-11-12. Retrieved 2022-11-12.
  2. 1 2 Mays, Larry W. (2013-05-01). "A brief history of water filtration/sedimentation". Water Supply. 13 (3): 735–742. doi:10.2166/ws.2013.102. ISSN   1606-9749. Archived from the original on 2022-11-12. Retrieved 2022-11-12.
  3. Ancient water technologies. Larry W. Mays. Dordrecht: Springer. 2010. ISBN   978-90-481-8632-7. OCLC   654396308. Archived from the original on 2023-09-30. Retrieved 2023-03-20.{{cite book}}: CS1 maint: others (link)
  4. "Types of Filters". Mountain Empire Community College. Archived from the original on Jan 9, 2008. Retrieved 2008-10-01.
  5. Crittenden, John C.; et al., eds. (2005). Water Treatment: Principles and Design (2nd ed.). Hoboken, NJ: Wiley. ISBN   0-471-11018-3.
  6. Leadem, Tim (2015-04-20). Hiking the West Coast of Vancouver Island: An Updated and Comprehensive Trail Guide. Greystone Books. ISBN   978-1-77164-147-0. Archived from the original on 2023-11-09. Retrieved 2020-11-04.
  7. Suribabu, C. R.; Sudarsan, J. S.; Nithiyanantham, S. (28 October 2019). "Performance and technical valuation of candle-type ceramic filter for water purification". International Journal of Energy and Water Resources. International Journal of Energy and Water Resources (2020) 4. 4: 37–45. doi:10.1007/s42108-019-00043-7 . Retrieved 2022-12-04.
  8. Longfei Liu; Zhongli Ji; Xin Luan (9 December 2019). "Multi-objective optimization model of high-temperature ceramic filter". Korean Journal of Chemical Engineering. Korean J. Chem. Eng., 37(5). 37 (5): 883–890. doi:10.1007/s11814-019-0461-1 . Retrieved 2022-12-04.
  9. "Water Polishing Process." Archived 2020-04-27 at the Wayback Machine (Patent description.) Retrieved 2009-11-26.
  10. "Algal Turf Scrubber Systems for Pollution Control" (PDF). Hydromentia. Archived (PDF) from the original on 2015-09-24. Retrieved 2016-06-30.
  11. A Brief History of Drinking Water. 2000. Rhode Island Water Resources Board
  12. HOT WATER IN CHINESE CULTURE. October 9, 2018. Cheng and Tsui
  13. Ancient Oriental Wisdom still Works: Removing ARGs in Drinking Water by Boiling as compared to Chlorination. Kun Wan et. al. Water Research. Volume 209. February 1, 2022. DOI
  14. Miller, Michael (October 22, 2020). "Ancient Maya built sophisticated water filters". Phys.org. Archived from the original on 2020-11-29. Retrieved 2020-12-03.
  15. The History of Drinking Water Treatment Environmental Protection Agency
  16. Ataie-Ashtiani, Behzad; Simmons, Craig T. (15 August 2019). "The millennium old hydrogeology textbook The Extraction of Hidden Waters by the Persian mathematician and engineer Abubakr Mohammad Karaji (c. 953c. 1029)". Hydrology and Earth System Sciences Discussions: 1–19. doi: 10.5194/hess-2019-407 . ISSN   1027-5606.
  17. "Water Treatment History". Buffalo Water. Archived from the original on 2022-12-04. Retrieved 2022-12-04.
  18. 1 2 Baker, Moses N. (1981). The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver: American Water Works Association, 64-80.
  19. "Allen Hazen." (1930). Jour. American Water Works Association. 22:9, 1268-70.
  20. Fuller, George W. (1902). "The Filtration Works of the East Jersey Water Company, at Little Falls, New Jersey." Transactions of the ASCE. 29 (February)): 153-202.
  21. Baylis, John R. (1959). "Review of Filter Bed Design and Methods of Washing." Journal AWWA. 51:11 1433-54.