Eridania Planitia

Last updated

Eridania Planitia
Feature typePlains
Location Eridania quadrangle, Mars
Coordinates 38°09′S122°13′E / 38.15°S 122.21°E / -38.15; 122.21 [1]
Diameter1,062.13 km (659.98 mi)
EponymLands of Eridanos

Eridania Planitia is a plain located in the southern highlands of Mars. It borders the Hellas basin to the west, Promethei Terra to the south, and the massive shield volcano Hesperia Planum to the north. [2] The name Eridania Planitia was approved by the International Astronomical Union (IAU) on 22 September 2010; it is named after the closest classical albedo feature. [1]

Contents

Characteristics

As with much of the Martian southern highlands, Eridania Planitia is ancient, with an estimated age of roughly 3.7–4 billion years old. [3] However, subregions within the plains are younger, with a large depression (informally named the Morpheos basin) likely forming within a period spanning between 3.52 and 3.67 billion years ago. [2] Additionally, Eridania Planitia is host to a concentration of expanded craters, indicating an ice-rich subsurface. [4]

Related Research Articles

<span class="mw-page-title-main">Utopia Planitia</span> Impact basin on Mars

Utopia Planitia is a large plain within Utopia, the largest recognized impact basin on Mars and in the Solar System with an estimated diameter of 3,300 km (2,100 mi). It is the Martian region where the Viking 2 lander touched down and began exploring on September 3, 1976, and the Zhurong rover touched down on May 14, 2021, as a part of the Tianwen-1 mission. It is located at the antipode of Argyre Planitia, centered at 46.7°N 117.5°E. It is also in the Casius quadrangle, Amenthes quadrangle, and the Cebrenia quadrangle of Mars. The region is in the broader North Polar/Borealis Basin that covers most of the Northern Hemisphere of Mars.

<span class="mw-page-title-main">Hellas Planitia</span> Plantia on Mars

Hellas Planitia is a plain located within the huge, roughly circular impact basin Hellas located in the southern hemisphere of the planet Mars. Hellas is the fourth- or fifth-largest known impact crater in the Solar System. The basin floor is about 7,152 m (23,465 ft) deep, 3,000 m (9,800 ft) deeper than the Moon's South Pole-Aitken basin, and extends about 2,300 km (1,400 mi) east to west. It is centered at 42.4°S 70.5°E. It features the lowest point on Mars, serves as a known source of global dust storms, and may have contained lakes and glaciers. Hellas Planitia spans the boundary between the Hellas quadrangle and the Noachis quadrangle.

<span class="mw-page-title-main">Argyre Planitia</span> Crater on Mars

Argyre Planitia is a plain located within the impact basin Argyre in the southern highlands of Mars. Its name comes from a map produced by Giovanni Schiaparelli in 1877; it refers to Argyre, a mythical island of silver in Greek mythology.

<span class="mw-page-title-main">Cryovolcano</span> Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock

A cryovolcano is a type of volcano that erupts gases and volatile material such as liquid water, ammonia, and hydrocarbons. The erupted material is collectively referred to as cryolava; it originates from a reservoir of subsurface cryomagma. Cryovolcanic eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface.

<span class="mw-page-title-main">Elysium (volcanic province)</span> 2nd-largest volcanic region of Mars

Elysium, located in the Elysium and Cebrenia quadrangles, is the second largest volcanic region on Mars, after Tharsis. The region includes the volcanoes Hecates Tholus, Elysium Mons and Albor Tholus. The province is centered roughly on Elysium Mons at 24.7°N 150°E. Elysium Planitia is a broad plain to the south of Elysium, centered at 3.0°N 154.7°E. Another large volcano, Apollinaris Mons, lies south of Elysium Planitia and is not part of the province. Besides having large volcanoes, Elysium has several areas with long trenches, called fossa or fossae (plural) on Mars. They include the Cerberus Fossae, Elysium Fossae, Galaxias Fossae, Hephaestus Fossae, Hyblaeus Fossae, Stygis Fossae and Zephyrus Fossae.

<span class="mw-page-title-main">Terra Sirenum</span>

Terra Sirenum is a large region in the southern hemisphere of the planet Mars. It is centered at 39.7°S 150°W and covers 3900 km at its broadest extent. It covers latitudes 10 to 70 South and longitudes 110 to 180 W. Terra Sirenum is an upland area notable for massive cratering including the large Newton Crater. Terra Sirenum is in the Phaethontis quadrangle and the Memnonia quadrangle of Mars. A low area in Terra Sirenum is believed to have once held a lake that eventually drained through Ma'adim Vallis.

<span class="mw-page-title-main">Acidalia Planitia</span> Planitia on Mars

Acidalia Planitia is a plain on Mars, between the Tharsis volcanic province and Arabia Terra to the north of Valles Marineris, centered at 49.8°N 339.3°E. Most of this region is found in the Mare Acidalium quadrangle, but a small part is in the Ismenius Lacus quadrangle. The plain contains the famous Cydonia region at the contact with the heavily cratered highland terrain.

<span class="mw-page-title-main">Isidis Planitia</span> Crater on Mars

Isidis Planitia is a plain located within a giant impact basin on Mars, located partly in the Syrtis Major quadrangle and partly in the Amenthes quadrangle. At approximately 1,900 km (1,200 mi) in diameter, it is the third-largest confirmed impact structure on the planet, after the Hellas and Utopia basins. Isidis was likely the last major basin to be formed on Mars, having formed approximately 3.9 billion years ago during the Noachian period, by an impactor around 200 kilometres (120 mi) in diameter. Due to dust coverage, it typically appears bright in telescopic views, and was mapped as a classical albedo feature, Isidis Regio, visible by telescope in the pre-spacecraft era.

<span class="mw-page-title-main">Athabasca Valles</span> Outflow channel on Mars

The Athabasca Valles are a late Amazonian-period outflow channel system in the central Elysium Planitia region of Mars, located to the south of the Elysium Rise. They are part of a network of outflow channels in this region that are understood to emanate from large fissures in the Martian surface rather than the chaos terrains that source the circum-Chryse outflow channels. The Athabasca Valles in particular emanate from one of the Cerberus Fossae fissures and flow downstream to the southwest, constrained to the south by a wrinkle ridge for over 100 km, before debouching into the Cerberus Palus volcanic plain. The Athabasca Valles are widely understood to be the youngest outflow channel system on the planet.

<span class="mw-page-title-main">Martian dichotomy</span> Geomorphological feature of Mars

The most conspicuous feature of Mars is a sharp contrast, known as the Martian dichotomy, between the Southern and the Northern hemispheres. The two hemispheres' geography differ in elevation by 1 to 3 km. The average thickness of the Martian crust is 45 km, with 32 km in the northern lowlands region, and 58 km in the southern highlands.

<span class="mw-page-title-main">Eridania quadrangle</span> Map of Mars

The Eridania quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Eridania quadrangle is also referred to as MC-29.

<span class="mw-page-title-main">Aeolis Mensae</span> A group of mensae on Mars

Aeolis Mensae is a tableland feature in the northwest Aeolis quadrangle of Mars. Its location is centered at 2.9° south latitude and 219.6° west longitude, in the transition zone between the Martian highlands and lowlands. It is 820 kilometres (510 mi) long and was named after a classical albedo feature (Aeolis). The constituent mensae can be as long as 70 kilometres (43 mi) and as tall as 2 kilometres (1.2 mi). It is notable for being the origin of an abnormal concentration of methane detected by Curiosity in 2019, although its geology has attracted scientific attention since at least a decade before this event. Aeolis Mensae is also the first region in Mars where submarine cyclic steps, an erosion feature that gives evidence of an ancient ocean, were identified.

Scalloped topography is common in the mid-latitudes of Mars, between 45° and 60° north and south. It is particularly prominent in the region of Utopia Planitia, in the northern hemisphere, and in the region of Peneus and Amphitrites Paterae in the southern hemisphere. Such topography consists of shallow, rimless depressions with scalloped edges, commonly referred to as "scalloped depressions" or simply "scallops". Scalloped depressions can be isolated or clustered and sometimes seem to coalesce. A typical scalloped depression displays a gentle equator-facing slope and a steeper pole-facing scarp. This topographic asymmetry is probably due to differences in insolation. Scalloped depressions are believed to form from the removal of subsurface material, possibly interstitial ice, by sublimation. This process may still be happening at present. This topography may be of great importance for future colonization of Mars because it may point to deposits of pure ice.

<span class="mw-page-title-main">Denning (Martian crater)</span> Crater on Mars

Denning Crater is a large Noachian-age impact crater in the southwestern Terra Sabaea region of the southern Martian highlands, within the Sinus Sabaeus quadrangle. It is located to the northwest of the Hellas impact basin within the furthest outskirts of the Hellas debris apron. The crater is 165 km in diameter and likely formed during the Late Heavy Bombardment, a period of intense bolide impacts affecting the entirety of the Solar System; during the Hesperian period, aeolian processes caused significant degradation of the crater's rim features and infilled the crater's floor. Similar to other large craters in this region of Mars, wind-eroded features are sporadically found on the basin floor. The presence of wrinkle ridges of varying orientations within and around the Denning basin has been correlated to regional tectonic events, including the formation of the Hellas basin itself. The crater was named for British astronomer William Frederick Denning.

<span class="mw-page-title-main">Evidence of water on Mars found by Mars Reconnaissance Orbiter</span>

The Mars Reconnaissance Orbiter's HiRISE instrument has taken many images that strongly suggest that Mars has had a rich history of water-related processes. Many features of Mars appear to be created by large amounts of water. That Mars once possessed large amounts of water was confirmed by isotope studies in a study published in March 2015, by a team of scientists showing that the ice caps were highly enriched with deuterium, heavy hydrogen, by seven times as much as the Earth. This means that Mars has lost a volume of water 6.5 times what is stored in today's polar caps. The water for a time would have formed an ocean in the low-lying Mare Boreum. The amount of water could have covered the planet about 140 meters, but was probably in an ocean that in places would be almost 1 mile deep.

<span class="mw-page-title-main">Feralia Planitia</span> 3rd largest crater on asteroid 4 Vesta

Feralia Planitia is the third-largest known impact structure on the asteroid Vesta, after Rheasilvia and Veneneia. It is one of several old, degraded impact basins that predate the Rheasilvia basin that now dominates Vesta. It is situated near the equator, and is 270 kilometres (170 mi) across east to west, though compressed latitudinally by the Rheasilvia impact.

<span class="mw-page-title-main">Lakes on Mars</span> Former Bodies of Water on Mars

In summer 1965, the first close-up images from Mars showed a cratered desert with no signs of water. However, over the decades, as more parts of the planet were imaged with better cameras on more sophisticated satellites, Mars showed evidence of past river valleys, lakes and present ice in glaciers and in the ground. It was discovered that the climate of Mars displays huge changes over geologic time because its axis is not stabilized by a large moon, as Earth's is. Also, some researchers maintain that surface liquid water could have existed for periods of time due to geothermal effects, chemical composition, or asteroid impacts. This article describes some of the places that could have held large lakes.

<span class="mw-page-title-main">Vulcan Planitia</span> Major plain on Charon

Vulcan Planitia, or Vulcan Planum, is the unofficial name given to a large plain on the southern hemisphere of Pluto's moon Charon. It discovered by New Horizons during its flyby of Pluto in July 2015. It is named after the fictional planet Vulcan in the science-fiction series Star Trek. The name is not approved by International Astronomical Union (IAU) as of 2024.

<span class="mw-page-title-main">Burney (crater)</span> Multi-ring impact basin on Pluto

Burney is the second-largest known impact basin on the dwarf planet Pluto. With a diameter of over 290 kilometres and possibly up to 350 kilometres, it is the second-largest known impact basin on Pluto, after the Sputnik Planitia basin. Burney is the only known impact basin on Pluto with visible multiple rims and is thus classified as a multi-ringed impact basin, though its rings have been heavily eroded due to Burney's age.

<span class="mw-page-title-main">Aonia Terra</span> Region of the planet Mars

Aonia Terra is a region in the southern hemisphere of the planet Mars. It is named after a classical albedo feature Aonia, that was named after the ancient Greek region Aonia.

References

  1. 1 2 "Eridania Planitia". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program. (Center Latitude: -38.15°, Center Longitude: 122.21°)
  2. 1 2 Kostama, V. -P.; Kukkonen, S.; Raitala, J. (June 2017). "Resurfacing event observed in Morpheos basin (Eridania Planitia) and the implications to the formation and timing of Waikato and Reull Valles, Mars". Planetary and Space Science. 140: 35–48. Bibcode:2017P&SS..140...35K. doi:10.1016/j.pss.2017.04.001.
  3. Bates, A.; Goossens, S.; Lorenzo, J. M.; Ojha, L.; Hood, D. R.; Karunatillake, S.; Nawotniak, S. K.; Paladino, T. (January 2023). "Supervolcanic resurfacing in northwestern Arabia Terra, Mars". Icarus. 390: 115303. Bibcode:2023Icar..39015303B. doi:10.1016/j.icarus.2022.115303.
  4. Viola, D.; McEwan, A. S. (9 January 2018). "Geomorphological Evidence for Shallow Ice in the Southern Hemisphere of Mars". Journal of Geophysical Research: Planets. 123 (1): 262–277. Bibcode:2018JGRE..123..262V. doi: 10.1002/2017JE005366 . hdl: 10150/627126 .

See also