Abalos Undae

Last updated

Abalos Undae dunes at Abalos Scopuli, the scarp of Abalos Mensa. The ice layers on the cap and basal formations are also visible. The picture was taken by the HiRISE camera on board the Mars Reconnaissance Orbiter and was enhanced by NASA in RGB colour. ESP 035924 2620 MRGB North Polar Scarp in Abalos Undae with Basal Exposure and Dunes rotated.jpg
Abalos Undae dunes at Abalos Scopuli, the scarp of Abalos Mensa . The ice layers on the cap and basal formations are also visible. The picture was taken by the HiRISE camera on board the Mars Reconnaissance Orbiter and was enhanced by NASA in RGB colour.

Abalos Undae (Latin for "Abalos Waves") is a dune field on Mars in the periphery of Planum Boreum, the Martian North pole. It is one of the officially named northern circumpolar dune fields, along with Olympia, Hyperboreae, and Siton Undae, and also one of the densest of the region. [1] [2] Its northernmost boundary is located in the southwest channel that separates the Abalos Colles formation from the main polar ice cap, and from there the dune field extends southwest all the way to the lowlands of Vastitas Borealis. [2] [3] [4]

Contents

It is theorised that the dunes of the Abalos field may have resulted from erosion of Rupes Tenuis (Latin : Thin Cliff), the polar scarp. [2] [5] Its name was approved by the International Astronomical Union in 1988. [1] It extends from latitude 74.94°N to 82.2°N and from longitude 261.4°E to 283.03°E (76.97°W – 98.6°W). Its origin is located at classical albedo feature with coordinates 72°N, 70°W and has a diameter of 442.74 km. [1]

Location and formation characteristics

Stereographic projection map showing the density distribution of dune fields in the Planum Boreum region. The grey regions are lower density fields. The four densest dune fields including Abalos Undae are shown in black. The prime meridian is at the bottom of the map. Abalos Undae is the smaller black region at centre left, between longitude 261.4degE to 283.03degE (76.97degW - 98.6degW). Distribution of dune fields in the Planum Boreum region.PNG
Stereographic projection map showing the density distribution of dune fields in the Planum Boreum region. The grey regions are lower density fields. The four densest dune fields including Abalos Undae are shown in black. The prime meridian is at the bottom of the map. Abalos Undae is the smaller black region at centre left, between longitude 261.4°E to 283.03°E (76.97°W – 98.6°W).

Abalos Undae is a dune field on Mars, in the periphery of Planum Boreum, the Martian north pole. It is a part of the northern circumpolar dune fields, along with Olympia, Hyperboreae, and Siton Undae, which are officially named after nearby classical albedo features. [2] It is located in the southwest channel that separates the Abalos Colles formation remnant from the main ice cap, and continues all the way to the channel's southern boundary. [2] [4] The dunes of the Abalos field may have formed from erosion of Rupes Tenuis, the polar scarp. [2] [5] Abalos Undae has its northernmost boundary in the neighbourhood of Abalos Mensa and continues in a southwestward direction after it emerges from the western end of a narrow channel separating Rupes Tenuis from Abalos Mensa. [3]

Enhanced colour images obtained by the High Resolution Imaging Science Experiment (HiRISE) camera on board the Mars Reconnaissance Orbiter highlight the areas of the dunes where different materials are present. [2] The blue areas indicate the presence of dunes of basaltic origin, while the light-colour areas are probably dust. The pictures are of sufficient resolution to show ripples on the dune surface. [2] The ripples are generated by winds, as are the dunes. [2] The dunes are considered stationary as a unit, with only small ripple movements present. [2]

Similarly to the rest of the dune fields around the periphery of Planum Borealis, the Abalos dune field is considered to consist of lag deposits resulting from the ablation of the sediment found in basal units. [4] The Abalos dune field is considered one of the densest dune fields in the northern circumpolar region of Mars. Other fields of similar density in the region include the Olympia, Hyperboreae, and Siton Undae. [6] [7]

The Abalos dune field consists of transverse dune linear sequences that, overall, form platforms of sand ranging from approximately 10 metres to 200 metres thickness. [6] Abalos Undae, along with Hyperboreae and Siton Undae, is a sand tributary to mostly medium-density sand fields located east of Olympia Undae and extending to the prime meridian of Mars. [6] Image analysis, performed using the method of spectral derivatives, indicates that Abalos Undae, and the rest of the densest dunes fields in the periphery of Planum Borealis, Olympia Undae and Hyperboreae Undae, show the highest pixel density indicating the presence of gypsum. [7] The gypsum of Abalos Undae may be eroding due to scouring action by substrates of bedrock involved in plains formation. [6]

Images by HiRISE and THEMIS

See also

Related Research Articles

<span class="mw-page-title-main">Planum Australe</span> Planum on Mars

Planum Australe is the southern polar plain on Mars. It extends southward of roughly 75°S and is centered at 83.9°S 160.0°E. The geology of this region was to be explored by the failed NASA mission Mars Polar Lander, which lost contact on entry into the Martian atmosphere.

<span class="mw-page-title-main">Planum Boreum</span> Planum on Mars

Planum Boreum is the northern polar plain on Mars. It extends northward from roughly 80°N and is centered at 88.0°N 15.0°E. Surrounding the high polar plain is a flat and featureless lowland plain called Vastitas Borealis which extends for approximately 1500 kilometers southwards, dominating the northern hemisphere.

<span class="mw-page-title-main">Olympia Undae</span> Martian dune field

Olympia Undae is a vast dune field in the north polar region of the planet Mars. It consists of a broad "sand sea" or erg that partly rings the north polar plateau from about 120° to 240°E longitude and 78° to 83°N latitude. Stretching about 1,100 km (680 mi) across and covering an area of 470,000 km2, Olympia Undae is the largest continuous dune field on Mars. It is similar in size to the Rub' Al Khali in the Arabian Peninsula, the largest active erg on Earth.

<span class="mw-page-title-main">Mare Boreum quadrangle</span> Map of Mars

The Mare Boreum quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Mare Boreum quadrangle is also referred to as MC-1. Its name derives from an older name for a feature that is now called Planum Boreum, a large plain surrounding the polar cap.

<span class="mw-page-title-main">Thaumasia quadrangle</span> Map of Mars

The Thaumasia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Thaumasia quadrangle is also referred to as MC-25 . The name comes from Thaumas, the god of the clouds and celestial apparitions.

<span class="mw-page-title-main">Korolev (Martian crater)</span> Crater on Mars

Korolev is an ice-filled impact crater in the Mare Boreum quadrangle of Mars, located at 73° north latitude and 165° east longitude. It is 81.4 kilometres (50.6 mi) in diameter and contains about 2,200 cubic kilometres (530 cu mi) of water ice, comparable in volume to Great Bear Lake in northern Canada. The crater was named after Sergei Korolev (1907–1966), the head Soviet rocket engineer and designer during the Space Race in the 1950s and 1960s.

<span class="mw-page-title-main">Martian polar ice caps</span> Polar water ice deposits on Mars

The planet Mars has two permanent polar ice caps. During a pole's winter, it lies in continuous darkness, chilling the surface and causing the deposition of 25–30% of the atmosphere into slabs of CO2 ice (dry ice). When the poles are again exposed to sunlight, the frozen CO2 sublimes. These seasonal actions transport large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds.

<span class="mw-page-title-main">Coexistence</span>

Coexistence is the property of things existing at the same time and in a proximity close enough to affect each other, without causing harm to one another. The term is often used with respect to people of different persuasions existing together, particularly where there is some history of antipathy or violence between those groups.

<span class="mw-page-title-main">True polar wander on Mars</span> Fluctuation in location of Martian poles

For some time, scientists have thought that the location of the poles of Mars shifted due to the great mass of volcanic material in the Tharsis dome which includes Olympus Mons, the highest volcano in the Solar System. For a period early in the history of Mars, the poles were about 20 degrees away from their present geographic positions. At that time ice was deposited in a region called Dorsa Argentea Formation. Also, the Martian dichotomy was aligned along the equator. A band of rivers formed at around 25 degrees south carried water from the southern highlands to the northern lowlands. After the polar shift, the location of the dichotomy boundary and the band of river valleys shifted. Dorsa Argentea was no longer at the pole. To produce the change in the pole location, the tilt of the planet remained unchanged, rather the crust and mantle moved. They rotated around the core.

<span class="mw-page-title-main">Hagal dune field</span> Martian dune field

Hagal is the informal name of a dune field on Mars located below the north pole of Mars. Its name derives from the sand dunes in Frank Herbert's novel Dune and the fictional planet Hagal. It is located at coordinates 78.0° N latitude, 84.0° E longitude, and consists of linear and round dunes with a southeast slipface orientation. It was one of the dune formations targeted for imaging by the HiRISE camera, on board the Mars Reconnaissance Orbiter, at the rate of one image every six weeks. in the third year of its seasonal expedition. It is also known as the "Martian Morse Code" due to the linear and rounded formations of its dunes, which have the appearance of dots and dashes.

<span class="mw-page-title-main">Nili Patera dune field</span> Martian dune field

Nili Patera is a dune field on Mars. It is located on top of a lava bed, at the site of an ancient volcano, the Nili Patera caldera of Syrtis Major, near the Martian equator, and it is one of the most active dune fields of Mars. Its location coordinates on Mars are 8.7° N latitude, 67.3° E longitude. It is being actively studied by the HiRISE camera, on board the Mars Reconnaissance Orbiter, at the rate of one image every six weeks. The study of the movement of the dunes provides information regarding wind variation as a function of time and furthers the study of surface erosion characteristics of the Martian landscape. This information can then be used for the development and design of future Mars expeditions. The dunes of the Patera field are of the barchan type and their study by HiRISE was the first one to establish dune and ripple movement of a minimum of 1 metre on Mars. The Patera dune field, was also the first to be investigated using the COSI-Corr software, which was originally developed to analyse the movement of earthbound dunes. The research results from the evidence provided by the monitoring of the Nili Patera field, indicate sand fluxes of the order of several cubic metres per metre per year, similar to the flux observed at the sand dunes of Victoria Valley in Antarctica.

<span class="mw-page-title-main">Rupes Tenuis</span> Martian north polar scarp

Rupes Tenuis is a Martian north polar scarp. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU in 1988. It extends from latitude 74.94°N to 82.2°N and from longitude 242.12°E to 300.77°E. Its centre is located at latitude 81.6°N longitude 85.47°W. It marks the outer perimeter of Planum Boreum from longitude 242.12°E to 300.77°E, and it is formed by the eastern extension of the Olympia Cavi, a series of local troughs and depressions, which become longer and deeper as they merge to create the Rupes Tenuis scarp formation. The scarp is located to the west of Chasma Boreale, at the base of Planum Boreum, and its height varies from a few hundred metres to a maximum of approximately 1000 metres.

<span class="mw-page-title-main">Hyperboreae Undae</span> Martian dune field

Hyperboreae Undae is one of the largest and densest dune fields of Planum Boreum, the Martian North Pole. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU in 1988. It extends from latitude 77.12°N to 82.8°N and from longitude 302.92°E to 316.02°E. Its centre is at latitude 79.96°N, longitude 49.49°W, and has a diameter of 463.65 kilometres (288.10 mi).

<span class="mw-page-title-main">Siton Undae</span> Martian dune field

Siton Undae is one of the largest and densest dune fields in the vicinity of Planum Boreum, the Martian northern polar ice-cap. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU on 20 March 2007. It extends from latitude 73.79°N to 77.5°N and from longitude 291.38°E to 301.4°E. Its centre is located at latitude 75.55°N, longitude 297.28E (62.72°W), and has a diameter of 222.97 kilometres (138.55 mi).

<span class="mw-page-title-main">Aspledon Undae</span> Martian dune field

Aspledon Undae is one of the named northern circumpolar dune fields in the vicinity of Planum Boreum, the Martian North pole. It is named after one of the classical albedo features on Mars. Its name was officially approved by the International Astronomical Union (IAU) on 20 March 2007. Its name is Greek, and derives from the name of a town in Boeotia, Ancient Greece, which, in turn, took its name from Aspledon, son of Poseidon, the ancient Greek god of the sea. The dunes of Aspledon Undae extend from latitude 71.47°N to 75.14°N and from longitude 305.83°E to 315.04°E. Its centre is located at latitude 73.06°N, longitude 309.65°E (50.35°W), and has a diameter of 215.2 km.

<span class="mw-page-title-main">Abalos Mensa</span>

Abalos Mensa is a wedge-shaped mound, or mensa and one of the named features in the vicinity of Planum Boreum, the Martian North pole. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU in 2006. It extends from latitude 80.21°N to 82.4°N and from longitude 279.34°E to 290.52°E. Its centre is located at latitude 81.17°N, longitude 284.4°E (75.6°W), and has a diameter of 129.18 km.

<span class="mw-page-title-main">Abalos Colles</span>

Abalos Colles is a stratified fragment of the Rupes Tenuis basal unit of Planum Boreum, located south of the Rupes Tenuis scarp and west of the Escorial crater. It contains 16 mounds. Abalos Colles is one of the named features in the vicinity of Planum Boreum, the Martian North pole. It is named after one of the classical albedo features on Mars located at latitude 72°N, longitude 70°W. Its name was officially approved by the International Astronomical Union (IAU) in 2003.

<span class="mw-page-title-main">Ogygis Undae</span> Martian dune field

Ogygis Undae is the only named southern hemisphere dune field on Mars. It is named after one of the classical albedo features on Mars, Ogygis Regio. Its name, which refers to Ogyges, a primeval mythological ruler in ancient Greece, was officially approved by the International Astronomical Union (IAU) on September 17, 2015. It is situated just outside Argyre Planitia, a plain located in the southern highlands of Mars. The dunes of Ogygis Undae extend from latitude −49.94°N to −49.37°N and from longitude 292.64°E to 294.93°E. They are centered at latitude −49.66°N, longitude 293.79°E (66.21°W), and extend approximately 87 km to the east and west from there. Ogygis Undae has an area of 1904 km2, and due to its large size is a primary subject for research on Martian dune morphology and sand composition.

<span class="mw-page-title-main">Louth (crater)</span> Crater on Mars

Louth is an impact crater on Mars located at 70.19°N 103.24°E in the Mare Boreum quadrangle. Located within Vastitas Borealis, the crater has a diameter of 36.29 kilometres and is named after Louth, a town in Ireland.

References

  1. 1 2 3 "Abalos Undae". Gazetteer of Planetary Nomenclature. USGS.
  2. 1 2 3 4 5 6 7 8 9 10 Kate Fishbaugh (19 November 2008). "Dunes in Abalos Undae".
  3. 1 2 Kenneth L. Tanaka; J. Alexis P. Rodriguez; James A. Skinner Jr; Mary C. Bourke; Corey M. Fortezzo; Kenneth E. Herkenhoff; Eric J. Kolb; Chris H. Okubo (28 February 2008). "North polar region of Mars: Advances in stratigraphy, structure, and erosional modification". Icarus. 196 (2): 318–358. Bibcode:2008Icar..196..318T. doi:10.1016/j.icarus.2008.01.021 . Retrieved 25 August 2017.
  4. 1 2 3 Niels Hovius; Andrew Lea-Cox; Jens M. Turowski (29 May 2008). "Recent volcano–ice interaction and outburst flooding in a Mars polar cap re-entrant". Icarus. 197 (197): 24–38. Bibcode:2008Icar..197...24H. doi:10.1016/j.icarus.2008.04.020.
  5. 1 2 NASA quote: "Today's image location is slightly east of Monday's image. In this image the polar scarp (called Tenuis Rupes) bisects the image.
  6. 1 2 3 4 K. L. Tanaka; R. K. Hayward (2008). MARS' NORTH CIRCUM-POLAR DUNES: DISTRIBUTION, SOURCES, AND MIGRATION HISTORY (PDF). Planetary Dunes Workshop: A Record of Climate Change.
  7. 1 2 M. Massé; O. Bourgeois; S. Le Mouélic; C. Verpoorter; A. Spiga; L. Le Deit (2012). "Wide distribution and glacial origin of polar gypsum on Mars". Earth and Planetary Science Letters. 317–318: 44–45. Bibcode:2012E&PSL.317...44M. doi:10.1016/j.epsl.2011.11.035.