Green Valley (Mars)

Last updated

Green Valley
PSP 001497 2480 RED detail 25cm.jpg
HiRISE image of a patch of land in the Green Valley region showing scattered small boulders and a polygonal fracture pattern.
Coordinates 68°21′N233°00′E / 68.35°N 233°E / 68.35; 233
NamingInformal name based on danger assessment map color

Green Valley is a region on Mars within Vastitas Borealis that was chosen as the landing site of NASA's Phoenix lander. It is located at 68.35 degrees north, 233 degrees east. The valley is about 50 kilometres wide but only about 250 metres deep; either it was filled in or was never any deeper than that. The edges are not visible from the middle of the valley. [1]

Polygonal patterns at Phoenix landing site Mars from Phoenix.jpg
Polygonal patterns at Phoenix landing site

The name "Green Valley" is not officially recognised by the International Astronomical Union. It came from the decision process by which it was selected as Phoenix's landing site: prospective landing areas were color-coded based on how hazardous they were, with red being most hazardous through yellow to green being the safest. [1] Green Valley has relatively few of the large boulders that could have tipped the lander if it had hit one during touchdown. [2]

The ground within Green Valley is covered with polygonal features several metres across and roughly ten centimetres high, thought to be caused either by thermal contraction (ice-wedge polygons) or by the effects of wind-blown dust (sand-wedge polygons). Water ice is thought to be just below the surface. [1] During the local winter as much as three feet of carbon dioxide ice is expected to appear on the surface. [3]

Shortly before Phoenix's scheduled landing, the Mars Reconnaissance Orbiter photographed a pair of kilometer-tall dust devils in the Green Valley area. [4]

Related Research Articles

<i>Viking 2</i> Space orbiter and lander sent to Mars

The Viking 2 mission was part of the American Viking program to Mars, and consisted of an orbiter and a lander essentially identical to that of the Viking 1 mission. Viking 2 was operational on Mars for 1281 sols. The Viking 2 lander operated on the surface for 1,316 days, or 1281 sols, and was turned off on April 12, 1980, when its batteries failed. The orbiter worked until July 25, 1978, returning almost 16,000 images in 706 orbits around Mars.

<span class="mw-page-title-main">Mars 2</span> Soviet space probe launched in 1971, consisting of a Mars orbiter and lander

The Mars 2 was an uncrewed space probe of the Mars program, a series of uncrewed Mars landers and orbiters launched by the Soviet Union beginning 19 May 1971. The Mars 2 and Mars 3 missions consisted of identical spacecraft, each with an orbiter and an attached lander. The orbiter is identical to the Venera 9 bus. The type of bus/orbiter is the 4MV. They were launched by a Proton-K heavy launch vehicle with a Blok D upper stage. The lander of Mars 2 became the first human-made object to reach the surface of Mars, although the landing system failed and the lander was lost.

<span class="mw-page-title-main">Mars 3</span> Soviet space probe launched in 1971, consisting of a Mars orbiter and lander

Mars 3 was a robotic space probe of the Soviet Mars program, launched May 28, 1971, nine days after its twin spacecraft Mars 2. The probes were identical robotic spacecraft launched by Proton-K rockets with a Blok D upper stage, each consisting of an orbiter and an attached lander. After the Mars 2 lander crashed on the Martian surface, the Mars 3 lander became the first spacecraft to attain a soft landing on Mars, on December 2, 1971. It failed 110 seconds after landing, having transmitted only a gray image with no details. The Mars 2 orbiter and Mars 3 orbiter continued to circle Mars and transmit images back to Earth for another eight months.

<i>Mars Pathfinder</i> Mission including first robotic rover to operate on Mars (1997)

Mars Pathfinder is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner, the first rover to operate outside the Earth–Moon system.

<span class="mw-page-title-main">Lander (spacecraft)</span> Type of spacecraft

A lander is a spacecraft that descends towards, then comes to rest on, the surface of an astronomical body other than Earth. In contrast to an impact probe, which makes a hard landing that damages or destroys the probe upon reaching the surface, a lander makes a soft landing after which the probe remains functional.

<i>Mars Polar Lander</i> Failed 1999 robotic Mars lander

The Mars Polar Lander, also known as the Mars Surveyor '98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999, to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor '98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity.

<i>Phoenix</i> (spacecraft) NASA Mars lander

Phoenix was an uncrewed space probe that landed on the surface of Mars on May 25, 2008, and operated until November 2, 2008. Phoenix was operational on Mars for 157 sols. Its instruments were used to assess the local habitability and to research the history of water on Mars. The mission was part of the Mars Scout Program; its total cost was $420 million, including the cost of launch.

<span class="mw-page-title-main">Vastitas Borealis</span> Lowland region in the northern hemisphere of Mars

Vastitas Borealis is the largest lowland region of Mars. It is in the northerly latitudes of the planet and encircles the northern polar region. Vastitas Borealis is often simply referred to as the northern plains, northern lowlands or the North polar erg of Mars. The plains lie 4–5 km below the mean radius of the planet, and is centered at 87.73°N 32.53°E. A small part of Vastitas Borealis lies in the Ismenius Lacus quadrangle.

<span class="mw-page-title-main">Mars landing</span> Landing of a spacecraft on the surface of Mars

A Mars landing is a landing of a spacecraft on the surface of Mars. Of multiple attempted Mars landings by robotic, uncrewed spacecraft, ten have had successful soft landings. There have also been studies for a possible human mission to Mars, including a landing, but none have been attempted. Soviet Union’s Mars 3, which landed in 1971, was the first successful Mars landing. As of 2023, the Soviet Union, United States, and China have conducted Mars landings successfully.

<span class="mw-page-title-main">Jezero (crater)</span> Crater on Mars

Jezero is a crater on Mars in the Syrtis Major quadrangle, about 45.0 km (28.0 mi) in diameter. Thought to have once been flooded with water, the crater contains a fan-delta deposit rich in clays. The lake in the crater was present when valley networks were forming on Mars. Besides having a delta, the crater shows point bars and inverted channels. From a study of the delta and channels, it was concluded that the lake inside the crater probably formed during a period in which there was continual surface runoff.

<span class="mw-page-title-main">Martian soil</span> Fine regolith found on the surface of Mars

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its toxicity due to the presence of perchlorates. The term Martian soil typically refers to the finer fraction of regolith. So far, no samples have been returned to Earth, the goal of a Mars sample-return mission, but the soil has been studied remotely with the use of Mars rovers and Mars orbiters.

<span class="mw-page-title-main">Diacria quadrangle</span> Map of Mars

The Diacria quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is located in the northwestern portion of Mars’ western hemisphere and covers 180° to 240° east longitude and 30° to 65° north latitude. The quadrangle uses a Lambert conformal conic projection at a nominal scale of 1:5,000,000 (1:5M). The Diacria quadrangle is also referred to as MC-2. The Diacria quadrangle covers parts of Arcadia Planitia and Amazonis Planitia.

<span class="mw-page-title-main">Water on Mars</span> Study of past and present water on Mars

Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies. Additionally, water ice is also visible at the surface at the north polar ice cap. Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole. More than 5 million km3 of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of 35 meters (115 ft). Even more ice might be locked away in the deep subsurface.

<span class="mw-page-title-main">Mars Exploration Program</span> Uncrewed spaceflight program by NASA

Mars Exploration Program (MEP) is a long-term effort to explore the planet Mars, funded and led by NASA. Formed in 1993, MEP has made use of orbital spacecraft, landers, and Mars rovers to explore the possibilities of life on Mars, as well as the planet's climate and natural resources. The program is managed by NASA's Science Mission Directorate by Doug McCuistion of the Planetary Science Division. As a result of 40% cuts to NASA's budget for fiscal year 2013, the Mars Program Planning Group (MPPG) was formed to help reformulate the MEP, bringing together leaders of NASA's technology, science, human operations, and science missions.

To date, interplanetary spacecraft have provided abundant evidence of water on Mars, dating back to the Mariner 9 mission, which arrived at Mars in 1971. This article provides a mission by mission breakdown of the discoveries they have made. For a more comprehensive description of evidence for water on Mars today, and the history of water on that planet, see Water on Mars.

<span class="mw-page-title-main">InSight</span> Mars lander, arrived November 2018

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission was a robotic lander designed to study the deep interior of the planet Mars. It was manufactured by Lockheed Martin Space, was managed by NASA's Jet Propulsion Laboratory (JPL), and two of its three scientific instruments were built by European agencies. The mission launched on 5 May 2018 at 11:05:01 UTC aboard an Atlas V-401 launch vehicle and successfully landed at Elysium Planitia on Mars on 26 November 2018 at 19:52:59 UTC. InSight was active on Mars for 1440 sols.

<span class="mw-page-title-main">Icebreaker Life</span>

Icebreaker Life is a Mars lander mission concept proposed to NASA's Discovery Program. The mission involves a stationary lander that would be a near copy of the successful 2008 Phoenix and InSight spacecraft, but would carry an astrobiology scientific payload, including a drill to sample ice-cemented ground in the northern plains to conduct a search for biosignatures of current or past life on Mars.

<i>Schiaparelli</i> EDM A Mars landing demonstration system

Schiaparelli EDM was a failed Entry, Descent, and Landing Demonstrator Module (EDM) of the ExoMars programme—a joint mission of the European Space Agency (ESA) and the Russian Space Agency Roscosmos. It was built in Italy and was intended to test technology for future soft landings on the surface of Mars. It also had a limited but focused science payload that would have measured atmospheric electricity on Mars and local meteorological conditions.

The following outline is provided as an overview of and topical guide to Mars:

References

Further reading

Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Clickable image: Clicking on the labels will open a new article.
Legend:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Active (white lined, *) *
Inactive *
Planned (dash lined, ***)
(view * discuss) Mars Map.JPG
Interactive image map of the global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Mano cursor.svg Clickable image:Clicking on the labels will open a new article.
Legend:   Active (white lined, ※)  Inactive  Planned (dash lined, ⁂)
PhoenixIcon.png Beagle 2
CuriosityIcon.png
Curiosity
PhoenixIcon.png
Deep Space 2
RoverIcon.png Rosalind Franklin
PhoenixIcon.png InSight
Mars3landericon.jpg Mars 2
Mars3landericon.jpg Mars 3
Mars3landericon.jpg Mars 6
PhoenixIcon.png
Mars Polar Lander ↓
RoverIcon.png Opportunity
CuriosityIcon.png
Perseverance
PhoenixIcon.png Phoenix
EDMIcon.png
Schiaparelli EDM
SojournerIcon.png Sojourner
RoverIcon.png
Spirit
ZhurongIcon.jpg Zhurong
VikingIcon.png
Viking 1
VikingIcon.png Viking 2