Noctis Labyrinthus

Last updated
Noctis Labyrinthus
Noctis Labyrinthus Viking 1 1980.png
Noctis Labyrinthus, as seen by Viking 1. North is up. The western initiation of the Valles Marineris is visible at the right. The Tharsis Montes are just beyond the horizon.
Feature typeCanyon system
Coordinates 7°00′S102°12′W / 7.0°S 102.2°W / -7.0; -102.2
Length1,263.0 km
EponymLatin – Labyrinth of Night
High resolution THEMIS daytime infrared image mosaic of Noctis Labyrinthus and its surroundings. The area is crisscrossed by multiple sets of graben running in different directions. The shield volcano Pavonis Mons is at upper left. Noctis Labyrinthus THEMIS day IR v11.5 0.5.jpg
High resolution THEMIS daytime infrared image mosaic of Noctis Labyrinthus and its surroundings. The area is crisscrossed by multiple sets of graben running in different directions. The shield volcano Pavonis Mons is at upper left.
Mariner 9 view of the Noctis Labyrinthus "labyrinth" at the western end of Valles Marineris on Mars. Linear graben, grooves, and crater chains dominate this region, along with a number of flat-topped mesas. The image is roughly 400 km across, centered at 6 S, 105 W, at the edge of the Tharsis bulge. North is up. Image located in Phoenicis Lacus quadrangle M09 mtvs4187 45.gif
Mariner 9 view of the Noctis Labyrinthus "labyrinth" at the western end of Valles Marineris on Mars. Linear graben, grooves, and crater chains dominate this region, along with a number of flat-topped mesas. The image is roughly 400 km across, centered at 6 S, 105 W, at the edge of the Tharsis bulge. North is up. Image located in Phoenicis Lacus quadrangle

Noctis Labyrinthus ( Latin for 'Labyrinth of the Night') is a region of Mars located in the Phoenicis Lacus quadrangle, between Valles Marineris and the Tharsis upland. [1] The region is notable for its maze-like system of deep, steep-walled valleys. The valleys and canyons of this region formed by faulting and many show classic features of grabens, with the upland plain surface preserved on the valley floor. In some places the valley floors are rougher, disturbed by landslides, and there are places where the land appears to have sunk down into pit-like formations. [2] It is thought that this faulting was triggered by volcanic activity in the Tharsis region. [3] Research described in December 2009 found a variety of minerals, including clays, sulfates, and hydrated silicas, in some of the layers. [4]

Contents

Context

Noctis Labyrinthus is located in the heart of Tharsis at the western end of the Valles Marineris, manifesting as a network of graben that extends in a spider-like network before coalescing into a coherent, relatively shallow graben swarm that curves in a semicircular fashion towards the south into the Claritas Rise. The graben are known as the Claritas Fossae beyond this point. [5]

Geology

The Noctis Labyrinthus fracture zone is centered at the heart of the Tharsis Rise, dividing a plateau of Hesperian-Noachian age that is understood to be of a basaltic composition. [6] The valleys of Noctis Labyrinthus fractured into three distinct trends (NNE/SSW, ENE/WSW, WNW/ESE) in an interlinked pattern that has been compared to the terrestrial fault systems that have formed over terrestrial domes. [5] The formation of the fracture zone have been dated to the Late Hesperian based on crater counting age dates, concurrent with the formation of the lava plains of the adjacent Syria Planum province. [6] Some researchers have modeled the formation of such chasmata on Mars on the propagation of simple graben underlain with dikes. As the underlying magma body drains, the chamber's pressure decreases and it begins to deflate. A chain of crater-like depressions forms, where the extent of the collapse dictated by how deeply the magma body is located. Noctis Labyrinthus is estimated to have experienced collapses from the drainage of magma chambers up to 5 km below the chasmata floors. [7] In Noctis Labyrinthus in particular, some researchers have speculated that the fracture zone's corridors may connect deeper intrusive structures, forming a plumbing network more akin to the terrestrial Thulean mantle plume, which was responsible for the formation of the North Atlantic Igneous Province. [7] In the chasmata of Noctis Labyrinthus, these pit crater chain collapse zones propagate directionally with a V-shaped tip, and can be used as an indicator of the direction into which magma withdraws from its underlying chamber. These V-tipped morphologies are generally found to propagate away from the center of the Tharsis Rise. [7]

Other authors have proposed an alternate origin for Noctis Labyrinthus, linking its formation to the Valles Marineris and likening its initial formation to the expansion and collapse of a dense lava tube network. [8] Supporters of the lava tube hypothesis note that no evidence of lateral lava flows from the chasmata have been observed, suggesting against the notion that dikes must be required to underlie the surface of the modern-day collapse features as there is no evidence that such a near-surface intrusion has breached the surface in the Noctis Labyrinthus region. [8] Critics of a purely tectonic hypothesis have also noted that although pit crater chains (central to the diking hypothesis) are generally aligned and coincident with graben, they are occasionally found to bifurcate and to cross coeval graben in a perpendicular direction in the vicinity of Noctis Labyrinthus. [8] Some authors have also proposed that Noctis Labyrinthus' chasmata may have formed due to extensional faulting in weakened rocks composed of interlayered tuff and lava flows, known to produce pit crater chains parallel to graben. [8]

Other authors have suggested that phreatomagmatic processes were associated with the formation of the Noctis Labyrinthus chasmata. This hypothesis is not widely favored because chaos terrain morphology, proposed to form from this mechanism, is not found in the Noctis Labyrinthus fracture network. Chasmata and pit crater chains like those of Noctis Labyrinthus are likewise also not observed near areas where phreatomagmatic activity is strongly believed to have occurred, such as the Sisyphi Montes. [8] Others have proposed that the chasmata of Noctis Labyrinthus are collapse features of a karstic nature, in which constituent carbonate rock is dissolved by meteoric water that has been acidified by acids originating in volcanic gases. This hypothesis has been challenged because carbonate spectral signatures have not been detected in the Noctis Labyrinthus network. [8]

The walls of the valleys of Noctis Labyrinthus have been widened significantly by slumps that have canvassed the valley floors with debris taking the form of mudflows and boulders. Some authors have attributed the steady collapse of the valley walls to creep tied to thermal cycling, which could cause the repeated freezing and thawing of ground ice. [5] Because of its location at the center of the Tharsis uplift, the melting associated with this creep could have been facilitated by increased heat flow to this area during periods of increased magmatic activity. [6] No evidence of fluvial or aeolian erosion is observed in this region. [5]

Mineralogical diversity

An unnamed depression near the southernmost extent of the Noctis Labyrinthus system, near the divide of Syria Planum and Sinai Planum and at the western end of the Valles Marineris, was found to be one of the most mineralogically diverse sites yet observed on the planet. These deposits, dated to the late Hesperian, post-date most Martian deposits of hydrated minerals. [6] Based on CRISM spectral imagery, authors studying this depression have interpretatively identified the presence of:

Of the hydrated iron sulfate minerals observed in the basin, some of them - such as ferricopiapite - are not stable in modern Martian conditions. However, researchers have suggested that they appear to coexist because the different deposits may have been exposed to the open atmosphere at different times, and some of these minerals do only fully dehydrate under Martian conditions over the course of many years. [6] Furthermore, opaline silica deposits observed within this depression display spectra that may occasionally suggest interpersal with the iron sulfate mineral jarosite and the phyllosilicate mineral montmorillonite. The latter material is interpreted as such from an unusual doublet shape resolved on its spectra. [6]

The minerals in this basin were most likely formed as a result of an initially acidic hydrothermal alteration of basaltic terrain, with the dissolution of plagioclase and calcium-rich pyroxenes increasing the pH steadily and causing the other minerals to precipitate. In this basin in particular, the mafic smectite layer overlays sulfates, aluminum phyllosilicate clays, and opaline silica deposits. The order of this layering is unique to the unnamed depression and is typically reversed in most Martian contexts, with the mafic smectites forming the bottom Noachian-age layer. [6] Some researchers have counterproposed that rather than a sequentially reversed depositional event, this basin formed in a single, highly heterogeneous event. This is not necessarily indicative of a global alterational phenomenon, but is most likely tied to a localized heat source such as a volcano or an impact crater. [6] In 2024, scientists Pascal Lee and Sourabh Shubham found evidence from CRISM, the HiRISE camera, and the Mars Orbital Laser Altimeter that this heat source was a volcano they dubbed Noctis Mons, which would be the seventh-highest mountain on Mars at 9,028 m (29,619 ft), and that the eastern part of its base was home to multiple glaciers with potential for hosting life, which could make it a highly valuable candidate target for astrobiology missions. [9] [10]

Calcium-rich pyroxenes have been spectrally observed elsewhere in the northern reaches of the Noctis Labyrinthus fracture zone. [6]

Observational history

In 1980, Philippe Masson of the University of Paris-Sud offered an integrated interpretation of the structural geochronology of Valles Marineris, Noctis Labyrinthus, and Claritas Fossae in light of imagery from Mariner 9 and the Viking Orbiter. [5]

In 2003, Daniel Mège (Pierre and Marie Curie University), Anthony C. Cook (University of Nottingham and the Smithsonian Institution), Erwan Garel (University of Maine in France), Yves Lagabrielle (University of Western Brittany), and Marie-Hélène Cormier (Columbia University) proposed a model for rifting on Mars initiated by the deflation of magma chambers, forming pit crater chains tracking directionally with simple graben. The researchers offered the first theoretical explanation as to how the chasmata of Noctis Labyrinthus formed. [7]

In 2012, a collaboration of French researchers Patrick Thollot, Nicolas Mangold, Véronique Ansan, and Stéphan Le Mouélic (University of Nantes), along with a cadre of American researchers including John F. Mustard (Brown University), Ralph E. Milliken (University of Notre Dame), and Scott Murchie (Applied Physics Laboratory) reported on an unnamed basin in southeastern Noctis Labyrinthus showing an extremely wide assemblage of minerals known to form across a wide range of pH and water availability conditions. The pit is the only one of its kind in Noctis Labyrinthus and has a greater variability than almost any other location yet observed on the planet. Using CRISM spectral data on HiRISE visual images for context, the researchers proposed that the variability of this pit is a result of hydrothermal alteration, with the dissolution of extant calcium-rich minerals (e.g. plagioclase) diminishing the acidity and thus kinds of minerals observed. The variability was explained without evoking a global warm and wet Martian climatic condition for the period. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Valles Marineris</span> Valley system on Mars

Valles Marineris is a system of canyons that runs along the Martian surface east of the Tharsis region. At more than 4,000 km (2,500 mi) long, 200 km (120 mi) wide and up to 7 km (23,000 ft) deep, Valles Marineris is the largest canyon in the Solar System.

In planetary nomenclature, a fossa is a long, narrow depression (trough) on the surface of an extraterrestrial body, such as a planet or moon. The term, which means "ditch" or "trench" in Latin, is not a geological term as such but a descriptor term used by the United States Geological Survey (USGS) and the International Astronomical Union (IAU) for topographic features whose geology or geomorphology is uncertain due to lack of data or knowledge of the exact processes that formed them. Fossae are believed to be the result of a number of geological processes, such as faulting or subsidence. Many fossae on Mars are probably graben.

<span class="mw-page-title-main">Oudemans (crater)</span> Crater on Mars

Oudemans is a crater on Mars, approximately 90 kilometers in diameter, named after Dutch astronomer Jean Abraham Chrétien Oudemans (1827–1906).

<span class="mw-page-title-main">Memnonia quadrangle</span> Map of Mars

The Memnonia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Memnonia quadrangle is also referred to as MC-16.

<span class="mw-page-title-main">Tempe Terra</span> Terra on Mars

Tempe Terra is a heavily cratered highland region in the northern hemisphere of the planet Mars. Located at the northeastern edge of the Tharsis volcanic province, Tempe Terra is notable for its high degree of crustal fracturing and deformation. The region also contains many small shield volcanoes, lava flows, and other volcanic structures.

<span class="mw-page-title-main">Elysium quadrangle</span> One of 30 quadrangle maps of Mars used by the US Geological Survey

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15.

<span class="mw-page-title-main">Tharsis quadrangle</span> Map of Mars

The Tharsis quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Tharsis quadrangle is also referred to as MC-9 . The name Tharsis refers to a land mentioned in the Bible. It may be at the location of the old town of Tartessus at the mouth of Guadalquivir.

<span class="mw-page-title-main">Lunae Palus quadrangle</span> Quadrangle map of Mars

The Lunae Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The quadrangle is also referred to as MC-10. Lunae Planum and parts of Xanthe Terra and Chryse Planitia are found in the Lunae Palus quadrangle. The Lunae Palus quadrangle contains many ancient river valleys.

<span class="mw-page-title-main">Mare Tyrrhenum quadrangle</span> Part of the surface of Mars

The Mare Tyrrhenum quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. This quadrangle is also referred to as MC-22. It contains parts of the regions Tyrrhena Terra, Hesperia Planum, and Terra Cimmeria.

<span class="mw-page-title-main">Phoenicis Lacus quadrangle</span> Map of Mars

The Phoenicis Lacus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Phoenicis Lacus quadrangle is also referred to as MC-17. Parts of Daedalia Planum, Sinai Planum, and Solis Planum are found in this quadrangle. Phoenicis Lacus is named after the phoenix which according to myth burns itself up every 500 years and then is reborn.

<span class="mw-page-title-main">Coprates quadrangle</span> Map of Mars

The Coprates quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Coprates quadrangle is also referred to as MC-18. The Coprates quadrangle contains parts of many of the old classical regions of Mars: Sinai Planum, Solis Planum, Thaumasia Planum, Lunae Planum, Noachis Terra, and Xanthe Terra.

<span class="mw-page-title-main">Eos Chaos</span> Chaos on Mars

Eos Chaos is a rough, collapsed area in the Coprates quadrangle on Mars at 16.8° south latitude and 46.9° west longitude. It is about 490 km long and was named after the Greek name of Aurora, an albedo feature.

<span class="mw-page-title-main">Capri Mensa</span> Mensa on Mars

Capri Mensa is a mesa in the Coprates quadrangle of Mars at 14° south latitude and 47.4° west longitude. It is about 275 km long and was named after a classical albedo feature name.

<span class="mw-page-title-main">Ophir Chasma</span> Canyon on Mars

Ophir Chasma is a canyon in the Coprates quadrangle of Mars at 4° south latitude and 72.5° west longitude. It is about 317 km long and was named after Ophir, a land mentioned in the Bible. In the Bible it was the land which King Solomon sent an expedition that returned with gold. It is a classical albedo feature name.

<span class="mw-page-title-main">Ius Chasma</span> Canyon on Mars

Ius Chasma is a large canyon in the Coprates quadrangle of Mars at 7° south latitude and 85.8° west longitude. It is about 938 km long and was named after a classical albedo feature name.

Tithonium Chasma is a large canyon in the Coprates quadrangle of Mars at 4.6° south latitude and 84.7° west longitude. It is about 810 km long and was named after a classical albedo feature.

The common surface features of Mars include dark slope streaks, dust devil tracks, sand dunes, Medusae Fossae Formation, fretted terrain, layers, gullies, glaciers, scalloped topography, chaos terrain, possible ancient rivers, pedestal craters, brain terrain, and ring mold craters.

<span class="mw-page-title-main">Equatorial layered deposits</span> Surface geological deposits on Mars

Equatorial layered deposits (ELD’s) have been called interior layered deposits (ILDs) in Valles Marineris. They are often found with the most abundant outcrops of hydrated sulfates on Mars, and thus are likely to preserve a record of liquid water in Martian history since hydrated sulfates are formed in the presence of water. Layering is visible on meter scale, and when the deposits are partly eroded, intricate patterns become visible. The layers in the mound in Gale Crater have been extensively studied from orbit by instruments on the Mars Reconnaissance Orbiter. The Curiosity Rover landed in the crater, and it has brought some ground truth to the observations from satellites. Many of the layers in ELD’s such as in Gale Crater are composed of fine-grained, easily erodible material as are many other layered deposits. On the basis of albedo, erosion patterns, physical characteristics, and composition, researchers have classified different groups of layers in Gale Crater that seem to be similar to layers in other (ELD’s). The groups include: a small yardang unit, a coarse yardang unit, and a terraced unit. Generally, equatorial layered deposits are found ~ ±30° of the equator. Equatorial Layered Deposits appear in various geological settings such as cratered terrains, chaotic terrains, the Valles Marineris chasmata, and large impact craters.

<span class="mw-page-title-main">Louros Valles</span> Martian valleys

The Louros Valles are a system of valleys on the planet Mars in the Coprates quadrangle. They sit on the southern edge of Ius Chasma. They are east of Noctis Labyrinthus. They display many layers in their sidewalls. Many other places on Mars also show rocks arranged in layers. Rock layers can be formed by volcanoes, wind, or water. A detailed discussion of layering with many Martian examples can be found in Sedimentary Geology of Mars.

<span class="mw-page-title-main">Thaumasia Planum</span> Planum on Mars

The Thaumasia Planum of Mars lies south of Melas Chasmata and Coprates Chasmata. It is in the Coprates quadrangle. Its center is located at 21.66 S and 294.78 E. It was named after a classical albedo feature. The name was approved in 2006. Some forms on its surface are evidence of a flow of lava or water the Melas Chasma. Many wrinkle ridges and grabens are visible. One set of grabens, called Nia Fossae, seem to follow the curve of Melas Chasmata which lies just to the north. Some researchers have discovered dikes in this region. For the study, Thermal Emission Imaging System (THEMIS) daytime infrared images, THEMIS nighttime infrared images, CTX images, and HiRISE images were used. These dikes contain magnesium-rich olivine which indicates a primitive magma composition. Dikes occur when magma follows cracks and faults under the ground. Sometimes erosion reveals them. The presence of pit craters, narrow grabens, linear troughs, and ovoid troughs are also evidence of dikes. These dikes that lie close to and parallel to Valles Marineris, the great canyon system, are evidence that extensional stress aided the formation of Valles Marineris. They may be part of a system of dikes that came from the same magma source that fed the whole area. That source may have been a “plume” of molted rock that rose from the Martian mantle.

References

  1. "Noctis Labyrinthus". [USGS planetary nomenclature page]. USGS . Retrieved 2013-10-17.
  2. "Noctis Labyrinthus". Archived from the original on 2006-10-04. Retrieved 2006-10-04.
  3. Mars Odyssey Mission THEMIS: Feature Image: Noctis Labyrinthus Landslides
  4. "Trough deposits on Mars point to complex hydrologic past". Sciencedaily.com. 2009-12-17. Archived from the original on 2013-10-18. Retrieved 2013-07-16.
  5. 1 2 3 4 5 Masson, P. (1980). "Contribution to the Structural Interpretation of the Valles Marineris-Noctis Labyrinthus-Claritas Fossae Regions of Mars". The Moon and the Planets. 22 (2): 211–219. Bibcode:1980M&P....22..211M. doi:10.1007/bf00898432. S2CID   130030803.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thollot, P; Mangold, N; Ansan, V; Le Mouélic, S.; Milliken, RE; Bishop, JL; Weitz, CM; Roach, LH; Mustard, JF; Murchie, SL (2012). "Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus". Journal of Geophysical Research. 117 (E00J06): n/a. Bibcode:2012JGRE..117.0J06T. doi: 10.1029/2011JE004028 . S2CID   6739191.
  7. 1 2 3 4 Mège, D; Cook, AC; Garel, E; Lagabrielle, Y; Cormier, M-H (2003). "Volcanic rifting at Martian grabens" (PDF). Journal of Geophysical Research. 108 (E5): 5044. Bibcode:2003JGRE..108.5044M. doi: 10.1029/2002JE001852 .
  8. 1 2 3 4 5 6 Leone, G (2014). "A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars". Journal of Volcanology and Geothermal Research. 277: 1–8. Bibcode:2014JVGR..277....1L. doi:10.1016/j.jvolgeores.2014.01.011.
  9. "Giant Volcano Discovered on Mars". SETI Institute. March 13, 2024. Retrieved March 20, 2024.
  10. "Remains of a Modern Glacier Found Near Mars' Equator Implies Water Ice Possibly Present at Low Latitudes on Mars Even Today". SETI Institute. March 15, 2023. Retrieved March 20, 2024.