Solar particle event

Last updated
Post-eruptive loops in the wake of a solar flare, image taken by the TRACE satellite (photo by NASA) Solar flare (TRACE).gif
Post-eruptive loops in the wake of a solar flare, image taken by the TRACE satellite (photo by NASA)

In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, [lower-alpha 1] [1] is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

Contents

Description

SPEs occur when charged particles in the Sun's atmosphere are accelerated to extremely high velocities. These charged particles, referred to as solar energetic particles, can escape into interplanetary space where they follow the interplanetary magnetic field.

When solar energetic particles interact with the Earth's magnetosphere, they are guided by the Earth's magnetic field towards the North and South poles where they can penetrate into the upper atmosphere. [2]

Cause

The physical mechanism behind the acceleration of solar energetic particles leading up to SPEs is currently debated. However, SPEs can generally be divided into two classes based on their acceleration mechanisms.[ citation needed ]

Gradual events

Gradual SPEs are thought to involve the acceleration of particles by shocks driven by coronal mass ejections in the upper corona. They are associated with type II radio bursts and are characterized by elemental abundances, charge states, and temperatures similar to that of the ambient corona. These events produce the highest particle intensities near Earth.

Impulsive events

Impulsive SPEs are thought to involve the acceleration of particles mostly by processes associated with magnetic reconnection and wave-particle interactions at the locations of solar flares. They are associated with short-duration flare emissions at low altitudes and type III radio bursts. They are less intense near Earth than gradual events. An additional hybrid class has been identified which involves characteristics of both gradual and impulsive events. [3] [4]

Terrestrial effects

Protons accelerated during an SPE normally have insufficient energy to penetrate the Earth's magnetic field. However, during unusually strong flares, protons can be accelerated to sufficient energies to reach the Earth's magnetosphere and ionosphere around the North Pole and South Pole.

Polar cap absorption events

Energetic protons that are guided into the polar regions collide with atmospheric constituents and release their energy through the process of ionization. The majority of the energy is deposited in the extreme lower region (D-region) of the ionosphere (around 50–80 km in altitude). This area is particularly important to ionospheric radio communications because this is the area where most of the absorption of radio signal energy occurs. The enhanced ionization produced by incoming energetic protons increases the absorption levels in the lower ionosphere and can have the effect of completely blocking all ionospheric radio communications through the polar regions. Such events are known as polar cap absorption events. These events commence and last as long as the energy of incoming protons at approximately greater than 10 MeV (million electron volts) exceeds roughly 10 pfu (particle flux units or particles  sr −1 cm−2 s−1) at geosynchronous satellite altitudes.

Polar cap absorption events and the associated HF radio blackout pose unique problems to commercial and military aviation. Routes that transit polar regions, especially above about 82-degrees north latitude, can only rely on HF radio communications. Hence, if polar cap absorption events are ongoing or forecast, commercial airlines are required to redirect their routes such that HF communications remain viable. [5] [6]

Ground level enhancements

Extremely intense SPEs capable of producing energetic protons with energies in excess of 200 MeV can increase neutron count rates at ground levels through secondary radiation effects. These rare events are known as ground level enhancements (or GLEs). [7] Presently, 73 GLE events are known. [8] The strongest known GLE event was detected on 23-Feb-1956. [9] Some events produce large amounts of HZE ions, although their contribution to the total radiation is small compared to the level of protons. [10]

Miyake events

Solar particle events are thought to be responsible for Miyake events, observed sharp enhancements of the concentration of certain isotopes found in tree rings. These events, discovered by physicist Fusa Miyake, have enabled the dating of a number of past SPEs to specific years.

Hazards

Humans

High altitude commercial transpolar aircraft flights have measured increases in radiation during these events. In 2019, the International Civil Aviation Organization introduced the Space Weather Centres that publish space weather advisories pertinent to international air navigation, describing the effects of space weather on aviation and possible mitigation actions. [11] Aircraft flights away from the polar regions are far less likely to see an impact from SPEs.

Significant proton radiation exposure can be experienced by astronauts who are outside of the protective shield of the Earth's magnetosphere, such as an astronaut in-transit to, or located on, the Moon. However, the effects can be minimized if the astronauts are in a low Earth orbit and remain confined to the most heavily shielded regions of their spacecraft. Proton radiation levels in low Earth orbit increase with orbital inclination. Therefore, the closer a spacecraft approaches the polar regions, the greater the exposure to energetic proton radiation will be.

Spacecraft

Energetic protons from SPEs can electrically charge spacecraft to levels that can damage electronic components. They can also cause electronic components to behave erratically. For example, solid state memory on spacecraft can be altered, which may cause data or software contamination and result in unexpected (phantom) spacecraft commands being executed. Energetic proton storms also destroy the efficiency of the solar panels that are designed to collect and convert sunlight to electricity. During years of exposure to energetic proton activity from the Sun, spacecraft can lose a substantial amount of electrical power that may require important instruments to be turned off.

When energetic protons strike the sensitive optical electronics in spacecraft (such as star trackers and other cameras) flashes occur in the images being captured. The effect can be so pronounced that during extreme events, it is not possible to obtain quality images of the Sun or stars. This can cause spacecraft to lose their orientation, which is critical if ground controllers are to maintain control.

Associated phenomena

Major SPEs can be associated with geomagnetic storms that can cause widespread disruption to electrical grids. However, proton events themselves are not responsible for producing anomalies in power grids, nor are they responsible for producing geomagnetic storms. Power grids are only sensitive to fluctuations in the Earth's magnetic field.

See also

Explanatory notes

  1. Solar particle events are less commonly referred to as solar proton events and prompt proton events.

Related Research Articles

<span class="mw-page-title-main">Ionosphere</span> Ionized part of Earths upper atmosphere

The ionosphere is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. It also affects GPS signals that travel through this layer.

<span class="mw-page-title-main">Aurora</span> Atmospheric effect

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Van Allen radiation belt</span> Zone of energetic charged particles around the planet Earth

Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created. The belts are named after James Van Allen, who is often credited with their discovery.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

Space environment is a branch of astronautics, aerospace engineering and space physics that seeks to understand and address conditions existing in space that affect the design and operation of spacecraft. A related subject, space weather, deals with dynamic processes in the solar-terrestrial system that can give rise to effects on spacecraft, but that can also affect the atmosphere, ionosphere and geomagnetic field, giving rise to several other kinds of effects on human technologies.

A sudden ionospheric disturbance (SID) is any one of several ionospheric perturbations, resulting from abnormally high ionization/plasma density in the D region of the ionosphere and caused by a solar flare and/or solar particle event (SPE). The SID results in a sudden increase in radio-wave absorption that is most severe in the upper medium frequency (MF) and lower high frequency (HF) ranges, and as a result often interrupts or interferes with telecommunications systems.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS).

A neutron monitor is a ground-based detector designed to measure the number of high-energy charged particles striking the Earth's atmosphere from outer space. For historical reasons the incoming particles are called "cosmic rays", but in fact they are particles, predominantly protons and Helium nuclei. Most of the time, a neutron monitor records galactic cosmic rays and their variation with the 11-year sunspot cycle and 22-year magnetic cycle. Occasionally the Sun emits cosmic rays of sufficient energy and intensity to raise radiation levels on Earth's surface to the degree that they are readily detected by neutron monitors. They are termed "ground level enhancements" (GLE).

<span class="mw-page-title-main">Energetic neutral atom</span> Technology to create global images of otherwise invisible phenomena

Energetic Neutral Atom (ENA) imaging is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.

HZE ions are the high-energy nuclei component of galactic cosmic rays (GCRs) which have an electric charge of +3 e or greater – that is, they must be the nuclei of elements heavier than hydrogen or helium.

<span class="mw-page-title-main">JEDI</span> Radiometer and particle detector on the Juno spacecraft

JEDI (Jupiter Energetic-particle Detector Instrument) is an instrument on the Juno spacecraft orbiting planet Jupiter. JEDI coordinates with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter's polar regions, and specifically to understand the generation of Jupiter's powerful aurora. It is part of a suite of instruments to study the magnetosphere of Jupiter. JEDI consists of three identical detectors that use microchannel plates and foil layers to detect the energy, angle, and types of ion within a certain range. It can detect electrons between 40 and 500 keV (Kilo electron-volts), and hydrogen and oxygen from a few tens of keV to less than 1000 keV (1 MeV). JEDI uses radiation-hardened Application Specific Integrated Circuits (ASIC)s. JEDI was turned on in January 2016 while still en route to Jupiter, to study interplanetary space. JEDI uses solid state detectors (SSDs) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

A Ground Level Enhancement or Ground Level Event (GLE), is a special subset of solar particle event where charged particles from the Sun have sufficient energy to generate effects which can be measured at the Earth's surface. These particles are accelerated to high energies either within the solar atmosphere or in interplanetary space, with some debate as to the predominant acceleration method. While solar particle events typically involve solar energetic particles at 10–100 MeV, GLEs involve particles with energies higher than about 400 MeV.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References

  1. Jiggens, P.; Clavie, C.; Evans, H.; O'Brien, T. P.; Witasse, O.; Mishev, A. L.; Nieminen, P.; Daly, E.; Kalegaev, V.; Vlasova, N.; Borisov, S.; Benck, S.; Poivey, C.; Cyamukungu, M.; Mazur, J.; Heynderickx, D.; Sandberg, I.; Berger, T.; Usoskin, I. G.; Paassilta, M.; Vainio, R.; Straube, U.; Müller, D.; Sánchez-Cano, B.; Hassler, D.; Praks, J.; Niemelä, P.; Leppinen, H.; Punkkinen, A.; Aminalragia-Giamini, S.; Nagatsuma, T. (January 2019). "In Situ Data and Effect Correlation During September 2017 Solar Particle Event". Space Weather. 17 (1): 99–117. Bibcode:2019SpWea..17...99J. doi: 10.1029/2018SW001936 . S2CID   126398974.
  2. "Solar Radiation Storm | NOAA / NWS Space Weather Prediction Center". www.swpc.noaa.gov. Retrieved 10 July 2022.
  3. Cliver, E. W. (1996). "Solar flare gamma-ray emission and energetic particles in space". AIP Conference Proceedings. 374: 45–60. Bibcode:1996AIPC..374...45C. doi:10.1063/1.50980 . Retrieved 10 July 2022.
  4. Bruno, A.; Bazilevskaya, G. A.; Boezio, M.; Christian, E. R.; Nolfo, G. A. de; Martucci, M.; Merge’, M.; Mikhailov, V. V.; Munini, R.; Richardson, I. G.; Ryan, J. M.; Stochaj, S.; Adriani, O.; Barbarino, G. C.; Bellotti, R.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Santis, C. De; Felice, V. Di; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Mayorov, A. G.; Menn, W.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N. (26 July 2018). "Solar Energetic Particle Events Observed by the PAMELA Mission". The Astrophysical Journal. 862 (2): 97. arXiv: 1807.10183 . Bibcode:2018ApJ...862...97B. doi: 10.3847/1538-4357/aacc26 . S2CID   118873810.
  5. Bachtel, B.; Frazier, M.; Hadaller, O.; Minkner, C.; Pandey, M.; Royce, W.; Ruhmann, D.; Santoni, F.; Vasatka, J.; Zhiganov, A. "Polar Route Operations" (PDF). Polar Operations by Boeing. WordPress.com. Retrieved April 23, 2024.
  6. Sauer, H. H.; Wilkinson, D. C. (2008). "Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons". Space Weather. 6 (12). Bibcode:2008SpWea...612002S. doi:10.1029/2008SW000399.
  7. Poluianov, S.; Usoskin, I.; Mishev, A.; Shea, M.; Smart, D. (2017). "GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors". Solar Physics. 292 (11): 176. arXiv: 1711.06161 . Bibcode:2017SoPh..292..176P. doi:10.1007/s11207-017-1202-4.
  8. International GLE Database
  9. Usoskin, I.; Koldobskiy, S.; Kovaltsov, G.; Rozanov, E.; Sukhodolov, T.; Mishev, M.; Mironova, I. (2020). "Revisited Reference Solar Proton Event of 23 February 1956: Assessment of the Cosmogenic-Isotope Method Sensitivity to Extreme Solar". Journal of Geophysical Research. 125: 6. arXiv: 2005.10597 . doi: 10.1029/2020JA027921 .
  10. Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989 Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack, NASA Johnson Space Center; Langley Research Center, May 1999.
  11. Doc 10100, Manual on Space Weather Information in Support of International Air Navigation. Montreal, Canada: ICAO. 1029. ISBN   978-92-9258-662-1.