July 2012 solar storm

Last updated

Solar storm of 2012
CME of 23 July 2012.jpg
The coronal mass ejection, as photographed by STEREO
Coronal mass ejection
First observedJuly 23, 2012 (2012-07-23)

Part of solar cycle 24

The solar storm of 2012 was a solar storm involving an unusually large and strong coronal mass ejection that occurred on July 23, 2012. It missed Earth by a margin of roughly nine days, as the Sun's equator rotates around its own axis once over a period of about 25 days. [1]

Contents

The region that produced the outburst was thus not pointed directly towards Earth at that time. The strength of the eruption has been predicted to be comparable to the 1859 Carrington Event that caused damage to electrical equipment worldwide, which at that time consisted mostly of telegraph systems. [2]

Overview

The event occurred in 2012, near the local maximum of sunspots that can be seen in this graph. Solar cycle 24 sunspot number progression and prediction.gif
The event occurred in 2012, near the local maximum of sunspots that can be seen in this graph.

At 02:08  UT on 23 July 2012, a large coronal mass ejection (CME) was launched from the Sun. [3] The eruption emanated from solar active region 11520 and coincided with what was at most an X2.5-class  solar flare. [4] The CME expelled a pair of adjacent magnetic clouds that drove a fast-moving shock wave outward from the Sun. [3] The eruption tore through Earth's orbit, hitting the STEREO-A spacecraft. [2] The spacecraft is a solar observatory equipped to measure such activity, and because it was far away from the Earth and thus not exposed to the strong electrical currents that can be induced when a CME hits the Earth's magnetosphere, [2] it survived the encounter and provided researchers with valuable data. Spacecraft observations recorded the shockwave at 20:55 UTC on 23 July while the magnetic clouds arrived two hours later. The leading shock wave associated with the CME was travelling radially at a speed of around 3,300 km/s (2,100 mi/s) relative to STEREO-A by the time it reached the spacecraft. The CME travelled from the Sun to Earth's orbit in about 20.78 hours, indicating an average speed of 2,000 km/s (1,200 mi/s). [3]

Based on the collected data, the eruption consisted of two separate ejections which were able to reach exceptionally high strength as the interplanetary medium around the Sun had been cleared by a smaller CME four days earlier. [2] Interaction between the primary CME and the preceding CMEs as they traversed the interplanetary medium also led to amplification of the magnetic field of the ejecta that continued by the time the primary CME reached Earth's orbit. [5]

The event occurred at a time of high sunspot activity during solar cycle 24.

Predicted effects

Had the CME hit the Earth, it is likely that it would have inflicted serious damage to electronic systems on a global scale. [2] The resulting geomagnetic storm may have had a strength of −1,150 to −600 nT, comparable to the impact of the Carrington Event. [5] A 2013 study estimated that the economic cost to the United States would have been between US$600 billion and $2.6 trillion. [6] Ying D. Liu, professor at China's State Key Laboratory of Space Weather, estimated that the recovery time from such a disaster would have been about four to ten years. [7]

Historical comparisons

The record fastest CME associated with the August 1972 solar storm is thought to have occurred in a similar process of earlier CMEs clearing particles in the path to Earth. This storm arrived in 14.6 hours, an even shorter duration after the parent flare erupted than for the great solar storm of 1859.

See also

Related Research Articles

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

A solar storm is a disturbance on the Sun, which can emanate outward across the heliosphere, affecting the entire Solar System, including Earth and its magnetosphere, and is the cause of space weather in the short-term with long-term patterns comprising space climate.

<span class="mw-page-title-main">STEREO</span> Solar observation mission (2006–present)

STEREO is a solar observation mission. Two nearly identical spacecraft were launched in 2006 into orbits around the Sun that cause them to respectively pull farther ahead of and fall gradually behind the Earth. This enabled stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.

<span class="mw-page-title-main">Coronal hole</span> Cool, tenuous region of the Suns corona

Coronal holes are regions of the Sun's corona that emit low levels of ultraviolet and X-ray radiation compared to their surroundings. They are composed of relatively cool and tenuous plasma permeated by magnetic fields that are open to interplanetary space. Compared to the corona's usual closed magnetic field that arches between regions of opposite magnetic polarity, the open magnetic field of a coronal hole allows solar wind to escape into space at a much quicker rate. This results in decreased temperature and density of the plasma at the site of a coronal hole, as well as an increased speed in the average solar wind measured in interplanetary space.

The Solar Sentinels was a series of proposed space missions to the Sun. Solar Sentinels was proposed in 2006 in conjunction with other Sun missions, and another simpler proposal was submitted in 2008.

<span class="mw-page-title-main">Carrington Event</span> Geomagnetic storm in 1859

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking on 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

<span class="mw-page-title-main">Aditya-L1</span> Indias first solar observation mission

Aditya-L1 is a coronagraphy spacecraft for studying the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian Space Research Institutes. It is orbiting at about 1.5 million km from Earth in a halo orbit around the Lagrange point 1 (L1) between the Earth and the Sun, where it will study the solar atmosphere, solar magnetic storms, and their impact on the environment around the Earth.

<span class="mw-page-title-main">Solar particle event</span> Solar phenomenon

In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

<span class="mw-page-title-main">2003 Halloween solar storms</span> Series of intense solar storms in 2003

The Halloween solar storms were a series of solar storms involving solar flares and coronal mass ejections that occurred from mid-October to early November 2003, peaking around October 28–29. This series of storms generated the largest solar flare ever recorded by the GOES system, modeled as strong as X45.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

<span class="mw-page-title-main">ESA Vigil</span> 2018 ESA concept study for a solar weather mission

Vigil, formerly known as Lagrange, is a space weather mission developed by the European Space Agency. The mission will provide the ESA Space Weather Office with instruments able to monitor the Sun, its solar corona and interplanetary medium between the Sun and Earth, to provide early warnings of increased solar activity, to identify and mitigate potential threats to society and ground, airborne and space based infrastructure as well as to allow 4 to 5 days space weather forecasts. To this purpose the Vigil mission will place for the first time a spacecraft at Sun-Earth Lagrange point 5 (L5) from where it would get a 'side' view of the Sun, observing regions of solar activity on the solar surface before they turn and face Earth.

<span class="mw-page-title-main">August 1972 solar storms</span> Solar storms during solar cycle 20

The solar storms of August 1972 were a historically powerful series of solar storms with intense to extreme solar flare, solar particle event, and geomagnetic storm components in early August 1972, during solar cycle 20. The storm caused widespread electric- and communication-grid disturbances through large portions of North America as well as satellite disruptions. On 4 August 1972 the storm caused the accidental detonation of numerous U.S. naval mines near Haiphong, North Vietnam. The coronal mass ejection (CME)'s transit time from the Sun to the Earth is the fastest ever recorded.

<span class="mw-page-title-main">Space Weather Follow On-Lagrange 1</span> Planned spacecraft mission

Space Weather Follow On-Lagrange 1 (SWFO-L1) is a future spacecraft mission planned to monitor signs of solar storms, which may pose harm to Earth's telecommunication network. The spacecraft will be operated by the National Oceanic and Atmospheric Administration (NOAA), with launch scheduled for 29 April 2025. It is planned to be placed at the Sun–Earth L1 Lagrange point, a location between the Earth and the Sun. This will allow SWFO-L1 to continuously watch the solar wind and energetic particles heading for Earth. SWFO-L1 is an ESPA Class Spacecraft, sized for launch on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) Grande ring in addition to the rocket's primary payload. The spacecraft's Solar Wind Instrument Suite (SWIS) which includes three instruments will monitor solar wind, and the Compact Coronagraph (CCOR) will monitor the Sun's surroundings to image coronal mass ejection (CME). A CME is a large outburst of plasma sent from the Sun towards interplanetary space.

Antoinette (Toni) Galvin is space physicist at the University of New Hampshire. She is known for her research on the solar wind.

<span class="mw-page-title-main">Natchimuthuk Gopalswamy</span> Indian American Solar Physicist

Dr Natchimuthuk "Nat" Gopalswamy is an Indian American Solar physicist. He is currently a staff scientist at the Heliophysics Division of NASA’s Goddard Space Flight Center.

References

  1. Williams, David R. (July 1, 2013). "Sun Fact Sheet". Goddard Space Flight Center . Retrieved January 13, 2015.
  2. 1 2 3 4 5 Phillips, Tony (July 23, 2014). "Near Miss: The Solar Superstorm of July 2012". NASA . Retrieved January 10, 2015.
  3. 1 2 3 Riley, Pete; Caplan, Ronald M.; Giacalone, Joe; Lario, David; Liu, Ying (February 26, 2016). "Properties of the fast forward shock driven by the 2012 July 23 extreme coronal mass ejection". The Astrophysical Journal. 819 (1): 57. arXiv: 1510.06088 . doi: 10.3847/0004-637X/819/1/57 .
  4. Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel (February 2018). "Extreme Space Weather Events: From Cradle to Grave". Space Science Reviews. 214 (1): 21. Bibcode:2018SSRv..214...21R. doi:10.1007/s11214-017-0456-3. S2CID   255074482.
  5. 1 2 Liu, Ying D.; Luhmann, Janet G.; Kajdič, Primož; Kilpua, Emilia K.J.; Lugaz, Noé; Nitta, Nariaki V.; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D.; Farrugia, Charles J.; Galvin, Antoinette B. (March 18, 2014). "Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections". Nature Communications. 5 (1): 3481. arXiv: 1405.6088 . Bibcode:2014NatCo...5.3481L. doi:10.1038/ncomms4481. PMID   24642508. S2CID   11999567.
  6. Lloyd's (2013). Solar Storm Risk to the North American Electric Grid (PDF) (Report). Archived (PDF) from the original on February 19, 2021. Retrieved September 16, 2023.
  7. Sanders, Robert (March 18, 2014). "Fierce solar magnetic storm barely missed Earth in 2012". UC Berkeley News Center. Archived from the original on March 19, 2014. Retrieved January 10, 2015.