Birkeland current

Last updated

Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. Schematic-of-combined-FACs-and-ionospheric-current-systems.png
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents.

A Birkeland current (also known as field-aligned current) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field and by bulk motions of plasma through the magnetosphere (convection indirectly driven by the interplanetary environment). The strength of the Birkeland currents changes with activity in the magnetosphere (e.g. during substorms). Small scale variations in the upward current sheets (downward flowing electrons) accelerate magnetospheric electrons which, when they reach the upper atmosphere, create the Auroras Borealis and Australis.

Contents

In the high latitude ionosphere (or auroral zones), the Birkeland currents close through the region of the auroral electrojet, which flows perpendicular to the local magnetic field in the ionosphere. The Birkeland currents occur in two pairs of field-aligned current sheets. One pair extends from noon through the dusk sector to the midnight sector. The other pair extends from noon through the dawn sector to the midnight sector. The sheet on the high latitude side of the auroral zone is referred to as the Region 1 current sheet and the sheet on the low latitude side is referred to as the Region 2 current sheet.

The currents were predicted in 1908 by Norwegian explorer and physicist Kristian Birkeland, who undertook expeditions north of the Arctic Circle to study the aurora. He rediscovered, using simple magnetic field measurement instruments, that when the aurora appeared the needles of magnetometers changed direction, confirming the findings of Anders Celsius and assistant Olof Hjorter more than a century before. This could only imply that currents were flowing in the atmosphere above. He theorized that somehow the Sun emitted a cathode ray, [2] [3] and corpuscles from what is now known as a solar wind entered the Earth's magnetic field and created currents, thereby creating the aurora. This view was scorned by other researchers, [4] but in 1967 a satellite, launched into the auroral region, showed that the currents posited by Birkeland existed. In honour of him and his theory these currents are named Birkeland currents. A good description of the discoveries by Birkeland is given in the book by Jago. [5]

Professor Emeritus of the Alfvén Laboratory in Sweden, Carl-Gunne Fälthammar wrote: [6] "A reason why Birkeland currents are particularly interesting is that, in the plasma forced to carry them, they cause a number of plasma physical processes to occur (waves, instabilities, fine structure formation). These in turn lead to consequences such as acceleration of charged particles, both positive and negative, and element separation (such as preferential ejection of oxygen ions). Both of these classes of phenomena should have a general astrophysical interest far beyond that of understanding the space environment of our own Earth."

Auroral-like Birkeland currents created by scientist Kristian Birkeland in his terrella, featuring a magnetised anode globe in an evacuated chamber. Birkeland-anode-globe-fig259.jpg
Auroral-like Birkeland currents created by scientist Kristian Birkeland in his terrella, featuring a magnetised anode globe in an evacuated chamber.

Characteristics

Auroral Birkeland currents carry about 100,000 amperes during quiet times [7] and more than 1 million amperes during geomagnetically disturbed times. [8] Birkeland had estimated currents "at heights of several hundred kilometres, and strengths of up to a million amperes" in 1908. [3] The ionospheric currents that connect the field-aligned currents give rise to Joule heating in the upper atmosphere. The heat is transferred from the ionospheric plasma to the gas of the upper atmosphere, which consequently rises and increases drag on low-altitude satellites.

Birkeland currents can also be created in the laboratory with multi-terawatt pulsed power generators. The resulting cross-section pattern indicates a hollow beam of electrons in the form of a circle of vortices, a formation called the diocotron instability [9] (similar to the Kelvin–Helmholtz instability), that subsequently leads to filamentation. Such vortices can be seen in aurora as "auroral curls". [10]

Birkeland currents are also one of a class of plasma phenomena called a z-pinch, so named because the azimuthal magnetic fields produced by the current pinches the current into a filamentary cable. This can also twist, producing a helical pinch that spirals like a twisted or braided rope, and this most closely corresponds to a Birkeland current. Pairs of parallel Birkeland currents will also interact due to Ampère's force law: parallel Birkeland currents moving in the same direction will attract each other with an electromagnetic force inversely proportional to their distance apart whilst parallel Birkeland currents moving in opposite directions will repel each other. There is also a short-range circular component to the force between two Birkeland currents that is opposite to the longer-range parallel forces. [11]

Electrons moving along a Birkeland current may be accelerated by a plasma double layer. If the resulting electrons approach the speed of light, they may subsequently produce a Bennett pinch, which in a magnetic field causes the electrons to spiral and emit synchrotron radiation that may include radio, visible light, x-rays, and gamma rays.

Spatial Distribution and Responses to Solar Wind Disturbances

Auroral Birkeland currents are constrained along the geomagnetic field. Therefore, the current’s distribution in 3-dimensional space could be largely described using the 2-dimensional distribution of the current’s footprints at a given altitude in the ionosphere, e.g., 110 km. A classical 2-dimensional description was summarized from satellite observations by Iijima and Potemra. [12] The footprints of Auroral Birkeland currents exhibit ring-shaped structures. As the currents are driven by solar winds, their spatial distribution and intensity are also dynamically moderated by solar wind disturbances. [13] Under intensive solar wind disturbances, the rings can quickly shift by 10 degrees in latitude in about 10 minutes. The latitudinal shift takes on average 20 minutes to respond to a solar wind change during the daytime but 70–90 minutes at night. [14]

The field-aligned current density at its ionopsheric footprints (about110 km altitude) on 4 June 2007, a day under moderate solar wind disturbances, predicted by the open-source MFACE, according to the solar wind conditions downloaded from the NASA OMNI serve. MFACE is an empirical mode extracted from 10-years of CHAMP magnetic observations. The time interval between neighboring frames in this movie denotes 5 minutes. Similar movies but under quiet and active solar wind disturbance levels are available at, e.g., . Moderate levels of geomagnetic activity FAC from 20070604T000000 to 20070605T000000.gif
The field-aligned current density at its ionopsheric footprints (about110 km altitude) on 4 June 2007, a day under moderate solar wind disturbances, predicted by the open-source MFACE, according to the solar wind conditions downloaded from the NASA OMNI serve. MFACE is an empirical mode extracted from 10-years of CHAMP magnetic observations. The time interval between neighboring frames in this movie denotes 5 minutes. Similar movies but under quiet and active solar wind disturbance levels are available at, e.g., .

History

Kristian Birkeland predicted the auroral electrojets in 1908. He wrote p. 95 "the currents there are imagined as having come into existence mainly as a secondary effect of the electric corpuscles from the sun drawn in out of space, and thus far come under the second of the possibilities mentioned above". And p. 105, "Fig. 50a represents those in which the current-directions at the storm-centre are directed westwards, and 50b those in which the currents move eastwards". Birkeland-currents.gif
Kristian Birkeland predicted the auroral electrojets in 1908. He wrote p. 95 "the currents there are imagined as having come into existence mainly as a secondary effect of the electric corpuscles from the sun drawn in out of space, and thus far come under the second of the possibilities mentioned above". And p. 105, "Fig. 50a represents those in which the current-directions at the storm-centre are directed westwards, and 50b those in which the currents move eastwards".

After Kristian Birkeland first suggested in 1908 that "currents there [in the aurora] are imagined as having come into existence mainly as a secondary effect of the electric corpuscles from the sun drawn in out of space," [3] the story appears to have become mired in politics. [18] Birkeland's ideas were generally ignored in favor of an alternative theory from British mathematician Sydney Chapman. [19]

In 1939, the Swedish Engineer and plasma physicist Hannes Alfvén promoted Birkeland's ideas in a paper [20] published on the generation of the current from the Solar Wind. In 1964 one of Alfvén's colleagues, Rolf Boström, also used field-aligned currents in a new model of auroral electrojets. [21]

Proof of Birkeland's theory of the aurora only came after a probe was sent into space. The crucial results were obtained from U.S. Navy satellite 1963-38C, launched in 1963 and carrying a magnetometer above the ionosphere. In 1966 Alfred Zmuda, J.H. Martin, and F.T.Heuring [22] analysed the satellite magnetometer results and reported their findings of magnetic disturbance in the aurora. In 1967 Alex Dessler and graduate student David Cummings wrote an article [23] arguing that Zmuda et al. had detected field-aligned currents. Alfvén subsequently acknowledged [24] that Dessler had "discovered the currents that Birkeland had predicted" and they should be called Birkeland-Dessler currents. 1967 is therefore taken as the date when Birkeland's theory was finally acknowledged to have been vindicated. In 1969 Milo Schield, Alex Dessler and John Freeman [25] used the name "Birkeland currents" for the first time. In 1970 Zmuda, Armstrong and Heuring wrote another paper [26] agreeing that their observations were compatible with field-aligned currents as suggested by Cummings and Dessler and by Boström. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Magnetopause</span> Abrupt boundary between a magnetosphere and the surrounding plasma

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Aurora</span> Natural luminous atmospheric effect observed chiefly at high latitudes

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Kristian Birkeland</span> Norwegian scientist

Kristian Olaf Bernhard Birkeland was a Norwegian scientist, professor of physics at the Royal Fredriks University in Oslo. He is best remembered for his theories of atmospheric electric currents that elucidated the nature of the aurora borealis. In order to fund his research on the aurorae, he invented the electromagnetic cannon and the Birkeland–Eyde process of fixing nitrogen from the air. Birkeland was nominated for the Nobel Prize seven times.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

<span class="mw-page-title-main">Hannes Alfvén</span> Swedish electrical engineer, plasma physicist and Nobel laureate

Hannes Olof Gösta Alfvén was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now known as Alfvén waves. He was originally trained as an electrical power engineer and later moved to research and teaching in the fields of plasma physics and electrical engineering. Alfvén made many contributions to plasma physics, including theories describing the behavior of aurorae, the Van Allen radiation belts, the effect of magnetic storms on the Earth's magnetic field, the terrestrial magnetosphere, and the dynamics of plasmas in the Milky Way galaxy.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

<span class="mw-page-title-main">Heliospheric current sheet</span> Surface of magnetic polarity change

The heliospheric current sheet, or interplanetary current sheet, is a surface separating regions of the heliosphere where the interplanetary magnetic field points toward and away from the Sun. A small electrical current with a current density of about 10−10 A/m2 flows within this surface, forming a current sheet confined to this surface. The shape of the current sheet results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium. The thickness of the current sheet is about 10,000 km (6,200 mi) near the orbit of the Earth.

The following is a chronology of discoveries concerning the magnetosphere.

Space physics, also known as space plasma physics, is the study of naturally occurring plasmas within Earth's upper atmosphere and the rest of the Solar System. It includes the topics of aeronomy, aurorae, planetary ionospheres and magnetospheres, radiation belts, and space weather. It also encompasses the discipline of heliophysics, which studies the solar physics of the Sun, its solar wind, the coronal heating problem, solar energetic particles, and the heliosphere.

An electrojet is an electric current which travels around the E region of the Earth's ionosphere. There are three electrojets: one above the magnetic equator, and one each near the Northern and Southern Polar Circles. Electrojets are Hall currents carried primarily by electrons at altitudes from 100 to 150 km. In this region the electron gyro frequency is much greater than the electron-neutral collision frequency. In contrast, the principal E region ions have gyrofrequencies much lower than the ion-neutral collision frequency.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.

<span class="mw-page-title-main">Substorm</span> Short term magnetosphere disturbance

A substorm, sometimes referred to as a magnetospheric substorm or an auroral substorm, is a brief disturbance in the Earth's magnetosphere that causes energy to be released from the "tail" of the magnetosphere and injected into the high latitude ionosphere. Visually, a substorm is seen as a sudden brightening and increased movement of auroral arcs. Substorms were first described in qualitative terms by Kristian Birkeland which he called polar elementary storms. Sydney Chapman used the term substorm about 1960 which is now the standard term. The morphology of aurora during a substorm was first described by Syun-Ichi Akasofu in 1964 using data collected during the International Geophysical Year.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field-. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines. That region is therefore called ionospheric dynamo region. The magnetic manifestation of these electric currents on the ground can be observed during magnetospheric quiet conditions. They are called Sq-variations and L-variations (L=lunar) of the geomagnetic field. Additional electric currents are generated by the varying magnetospheric electric convection field. These are the DP1-currents and the polar DP2-currents. Finally, a polar-ring current has been derived from the observations which depends on the polarity of the interplanetary magnetic field. These geomagnetic variations belong to the so-called external part of the geomagnetic field. Their amplitudes reach at most about 1% of the main internal geomagnetic field Bo.

<span class="mw-page-title-main">Alexander J. Dessler</span> American astrophysicist (1928–2023)

Alexander J. Dessler was an American space scientist known for conceiving the term heliosphere and for founding the first Space Science Department in the United States.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References

The complex self-constricting magnetic field lines and current paths in a Birkeland current that may develop in a plasma (Figure 15.3.2, Alfven and Arrhenius, 1976) Magnetic rope.svg
The complex self-constricting magnetic field lines and current paths in a Birkeland current that may develop in a plasma (Figure 15.3.2, Alfvén and Arrhenius, 1976)
  1. Le, G.; J. A. Slavin; R. J. Strangeway (2010). "Space Technology 5 observations of the imbalance of regions 1 and 2 field-aligned currents and its implication to the cross-polar cap Pedersen currents". J. Geophys. Res. 115 (A07202): A07202. Bibcode:2010JGRA..115.7202L. doi: 10.1029/2009JA014979 .
  2. Birkeland, Kristian (1896). "Sur les rayons cathodiques sous l'action de forces magnetiques intenses". Archives des Sciences Physiques. 4: 497–512.
  3. 1 2 3 4 Birkeland, Kristian (1908). The Norwegian Aurora Polaris Expedition 1902-1903. New York and Christiania (now Oslo): H. Aschehoug & Co. out-of-print, full text online
  4. Schuster, Arthur (March 1912). "(article title N/A)". Proceedings of the Royal Society A . 85 (575): 44–50. Bibcode:1911RSPSA..85...44S. doi: 10.1098/rspa.1911.0019 .
  5. Jago, Lucy (2001). The Northern Lights: How One Man Sacrificed Love, Happiness and Sanity to Unlock the Secrets of Space . Knopf. pp.  320. ISBN   978-0-375-40980-6.
  6. Fälthammar, Carl-Gunne (December 1986). "Magnetosphere-Ionosphere Interactions. Near Earth Manifestations of the Plasma Universe". IEEE Transactions on Plasma Science. PS-14 (6): 616–628. Bibcode:1986ITPS...14..616F. doi:10.1109/TPS.1986.4316613. S2CID   122813564.
  7. Suzuki, Akira; Naoshi Fukushima (1998). "Space current around the earth obtained with Ampère's law applied to the MAGSAT orbit and data". Earth Planets Space. 50 (1): 43–56. Bibcode:1998EP&S...50...43S. doi: 10.1186/bf03352085 . S2CID   55733312.
  8. Anderson, B. J.; J. b. Gary; T. A. Potemra; R. A. Frahm; J. R. Sharber; J. D. Winningham (1998). "UARS observations of Birkeland currents and Joule heating rates for the November 4, 1993, storm" (PDF). J. Geophys. Res. 103 (A11): 26323–35. Bibcode:1998JGR...10326323A. doi:10.1029/98JA01236.
  9. Plasma phenomena - instabilities Archived 28 May 2014 at the Wayback Machine
  10. Pseudo-color, white-light images of curl formations in auroral arcs Archived 3 May 2005 at the Wayback Machine
  11. Electromagnetic Forces Archived 3 October 2005 at the Wayback Machine
  12. Iijima, T.; Potemra, T. A. (1 December 1976). "Field-aligned currents in the dayside cusp observed by Triad". Journal of Geophysical Research. 81 (34): 5971–5979. Bibcode:1976JGR....81.5971I. doi:10.1029/ja081i034p05971. ISSN   0148-0227.
  13. 1 2 He, Maosheng; Vogt, Joachim; Lühr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang (September 2012). "A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE)". Geophysical Research Letters. 39 (18). Bibcode:2012GeoRL..3918105H. doi: 10.1029/2012gl053168 . hdl: 2060/20140005564 . ISSN   0094-8276. S2CID   51690849.
  14. He, Maosheng; Vogt, Joachim; Lühr, Hermann; Sorbalo, Eugen (July 2014). "Local time resolved dynamics of field-aligned currents and their response to solar wind variability". Journal of Geophysical Research: Space Physics. 119 (7): 5305–5315. Bibcode:2014JGRA..119.5305H. doi:10.1002/2014ja019776. ISSN   2169-9380. S2CID   129749917.
  15. He, Maosheng (7 July 2019). "MFACE: An empirical model for the aurora field-aligned currents". Harvard Dataverse. doi:10.7910/DVN/GA5ZTO.{{cite journal}}: Cite journal requires |journal= (help)
  16. "SPDF - OMNIWeb Service". omniweb.gsfc.nasa.gov. Retrieved 26 January 2022.
  17. Aurora current evolution at active levels of geomagnetic activity , retrieved 26 January 2022
  18. Brush, Stephen G. (December 1992). "Alfvén's Programme in Solar System Physics". IEEE Transactions on Plasma Science. 20 (6): 577–589. Bibcode:1992ITPS...20..577B. doi:10.1109/27.199495.
  19. S. Chapman and J. Bartels, ‘’Geomagnetism,’’ Vol. 1 and 2, Clarendon Press, Oxford, 1940.
  20. Alfvén, Hannes (1939), "Theory of Magnetic Storms and of the Aurorae", K. Sven. Vetenskapsakad. Handl., ser. 3, vol. 18, no. 3, p. 1, 1939. Reprinted in part, with comments by A. J. Dessler and J. Wilcox, in Eos, Trans. Am. Geophys. Un., vol. 51, p. 180, 1970.
  21. 1 2 Boström R. (1964). "A Model of the Auroral Electrojets". J. Geophys. Res. 69 (23): 4983–4999. Bibcode:1964JGR....69.4983B. doi:10.1029/JZ069i023p04983.
  22. Zmuda, Alfred; J.H. Martin & F.T.Heuring (1966). "Transverse Magnetic Disturbances at 1100 Kilometers in the Auroral Region". J. Geophys. Res. 71 (21): 5033–5045. Bibcode:1966JGR....71.5033Z. doi:10.1029/JZ071i021p05033.
  23. Cummings, W. D.; A. J. Dessler (1967). "Field-Aligned Currents in the Magnetosphere". J. Geophys. Res. 72 (3): 1007–1013. Bibcode:1967JGR....72.1007C. doi:10.1029/JZ072i003p01007.
  24. Alfvén, Hannes (1986). "Double layers and circuits in astrophysics". IEEE Trans. Plasma Sci. 14 (6): 779–793. Bibcode:1986ITPS...14..779A. doi:10.1109/TPS.1986.4316626. hdl: 2060/19870005703 . S2CID   11866813.
  25. Schields, M.; J. Freeman; A. Dessler (1969). "A Source for Field-Aligned Currents at Auroral Latitudes". J. Geophys. Res. 74 (1): 247–256. Bibcode:1969JGR....74..247S. doi:10.1029/JA074i001p00247.
  26. Zmuda, A.; J. Armstrong; F. Heuring (1970). "Characteristics of Transverse Magnetic Disturbances Observed at 1100 Kilometers in the Auroral Oval". J. Geophys. Res. 75 (25): 4757–4762. Bibcode:1970JGR....75.4757Z. doi:10.1029/JA075i025p04757.
  27. Alfvén, Hannes (1976). Evolution of the Solar System. Washington. D.C., USA: Scientific and Technical Information Office, National Aeronautics and Space Administration.

Further reading

Books
Journals