Miyake event

Last updated

A Miyake event is an observed sharp enhancement of the production of cosmogenic isotopes by cosmic rays. It can be marked by a spike in the concentration of radioactive carbon isotope 14
C
in tree rings, as well as 10
Be
and 36
Cl
in ice cores, which are all independently dated. At present, five significant events are known (7176 BCE, 5259 BCE, 660 BCE, 774 CE, 993 CE) for which the spike in 14
C
is quite remarkable, i.e. above 1% rise over a period of 2 years, and four more events (12,350 BCE, [1] 5410 BCE, 1052 CE, 1279 CE) need independent confirmation. It is not known how often Miyake events occur, but from the presently available data it is estimated that such an event would occur once every 400–2400 years. [2]

Contents

There is strong evidence that Miyake events are caused by extreme solar particle events. [3] [4] and they are likely related to super-flares discovered on solar-like stars. [4] [5] Although the Miyake events are based on extreme year-to-year rises of 14
C
concentration, the duration of the periods over which the 14
C
levels increase or stay at high levels are longer than one year. [6] [7] However, a universal cause and origin of all the events is not yet established in the scientific field, and some of these events may be the result of different phenomena coming from the outer space (such as a Gamma-ray burst). [8]

A recently reported sharp spike in 14
C
that occurred between 12,350 and 12,349 BCE, may represent the largest known Miyake event. This event was identified during a study conducted by an international team of researchers who measured radiocarbon levels in ancient trees recovered from the eroded banks of the Drouzet River, near Gap, France, in the Southern French Alps. [9] [10] [11] According to the initial study the new event is roughly twice the size of the Δ14
C
increase for more recent 774 CE and 993 CE events, but the strength of the corresponding solar storm is not yet assessed. However, the newly discovered 12,350 BCE event has not yet been independently confirmed in any other wood from other regions, nor it is reliably supported by a clear corresponding spike in other isotopes [10] (such as Beryllium-10) that are usually used in combination for absolute radiometric dating.

A Miyake event occurring in modern conditions might have significant impacts on global technological infrastructure such as satellites, telecommunications, and power grids. [7] [12] [13]

Discovery

The events are named after the Japanese physicist Fusa Miyake who, as a doctoral student, was the first one to identify these radiocarbon spikes and published the results with co-authors in 2012 in the journal Nature . [14] The investigation at that time found a strong 14
C
increase in the annual rings of Japanese cedars for the years 774/775. The event of 775 was independently discovered, using the low-resolution IntCal data. [15] In 2013, Miyake and co-authors published the discovery of another similar radiocarbon spike in the years 993/994. [16] In December 2013, Miyake received her Doctor of Science degree from Nagoya University. [17]

Time benchmark

After a Miyake event is well-studied and confirmed, it can serve as a reference time benchmark, a "year-stamp", enabling more precise dating of historical events. Six diverse historical occurrences, from archaeological sites to natural disasters, have thus been dated to a specific year, using Miyake events as benchmarks and counting tree rings. [18] For example, wooden houses in the Viking site at L'Anse aux Meadows in Newfoundland were dated by finding the 993 CE Miyake event and then counting tree rings, which showed that the wood is from a tree felled in 1021 CE. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Radiocarbon dating</span> Method of determining the age of objects

Radiocarbon dating is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.

<span class="mw-page-title-main">774</span> Calendar year

Year 774 (DCCLXXIV) was a common year starting on Saturday of the Julian calendar. The denomination 774 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.

<span class="mw-page-title-main">Dendrochronology</span> Method of dating based on the analysis of patterns of tree rings

Dendrochronology is the scientific method of dating tree rings to the exact year they were formed in a tree. As well as dating them, this can give data for dendroclimatology, the study of climate and atmospheric conditions during different periods in history from the wood of old trees. Dendrochronology derives from the Ancient Greek dendron, meaning "tree", khronos, meaning "time", and -logia, "the study of".

<span class="mw-page-title-main">993</span> Calendar year

Year 993 (CMXCIII) was a common year starting on Sunday of the Julian calendar.

<span class="mw-page-title-main">Carbon-14</span> Isotope of carbon

Carbon-14, C-14, 14
C
or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

<span class="mw-page-title-main">Solar maximum</span> Regular period of greatest solar activity

Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. On average, the solar cycle takes about 11 years to go from one solar maximum to the next, with duration observed varying from 9 to 14 years.

<span class="mw-page-title-main">Solar cycle</span> Periodic change in the Suns activity

The solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surface. Over the period of a solar cycle, levels of solar radiation and ejection of solar material, the number and size of sunspots, solar flares, and coronal loops all exhibit a synchronized fluctuation from a period of minimum activity to a period of a maximum activity back to a period of minimum activity.

<span class="mw-page-title-main">Beryllium-10</span> Isotope of beryllium

Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen. Beryllium-10 has a half-life of 1.39 × 106 years, and decays by beta decay to stable boron-10 with a maximum energy of 556.2 keV. It decays through the reaction 10Be→10B + e. Light elements in the atmosphere react with high energy galactic cosmic ray particles. The spallation of the reaction products is the source of 10Be (t, u particles like n or p):

The interplanetary dust cloud, or zodiacal cloud, consists of cosmic dust that pervades the space between planets within planetary systems, such as the Solar System. This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.

<span class="mw-page-title-main">Minoan eruption</span> Major volcanic eruption around 1600 BCE

The Minoan eruption was a catastrophic volcanic eruption that devastated the Aegean island of Thera circa 1600 BCE. It destroyed the Minoan settlement at Akrotiri, as well as communities and agricultural areas on nearby islands and the coast of Crete with subsequent earthquakes and paleotsunamis. With a Volcanic Explosivity Index (VEI) of between 6 and 7, it resulted in the ejection of approximately 28–41 km3 (6.7–9.8 cu mi) of dense-rock equivalent (DRE), the eruption was one of the largest volcanic events in human history. Since tephra from the Minoan eruption serves as a marker horizon in nearly all archaeological sites in the Eastern Mediterranean, its precise date is of high importance and has been fiercely debated among archaeologists and volcanologists for decades, without coming to a definite conclusion.

<span class="mw-page-title-main">Carrington Event</span> Geomagnetic storm in 1859

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking from 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in multiple telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

Superflares are very strong explosions observed on stars with energies up to ten thousand times that of typical solar flares. The stars in this class satisfy conditions which should make them solar analogues, and would be expected to be stable over very long time scales. The original nine candidates were detected by a variety of methods. No systematic study was possible until the launch of the Kepler space telescope, which monitored a very large number of solar-type stars with very high accuracy for an extended period. This showed that a small proportion of stars had violent outbursts. In many cases there were multiple events on the same star. Younger stars were more likely to flare than old ones, but strong events were seen on stars as old as the Sun.

<span class="mw-page-title-main">774–775 carbon-14 spike</span> Observed increase concentration of carbon-14 in tree rings dated 774 or 775

The 774–775 carbon-14 spike is an observed increase of around 1.2% in the concentration of the radioactive carbon-14 isotope in tree rings dated to 774 or 775 CE, which is about 20 times higher than the normal year-to-year variation of radiocarbon in the atmosphere. It was discovered during a study of Japanese cedar tree-rings, with the year of occurrence determined through dendrochronology. A surge in beryllium isotope 10
Be
, detected in Antarctic ice cores, has also been associated with the 774–775 event. The 774–775 CE carbon-14 spike is one of several Miyake events and it produced the largest and most rapid rise in carbon-14 ever recorded.

<span class="mw-page-title-main">Solar particle event</span> Solar phenomenon

In solar physics, a solar particle event (SPE), also known as a solar energetic particle (SEP) event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

<span class="mw-page-title-main">993–994 carbon-14 spike</span> Solar storm

The 993–994 carbon-14 spike was a rapid 0.91% increase in carbon-14 isotope content from tree rings dated 993-994 CE. This event was also confirmed with an associated increase of beryllium-10 in Antarctic ice core samples, supporting the hypothesis that this event was of solar origin. There were several astronomical observations during this time that correspond with the 14C and 10Be spikes, but these texts are few and far between.

The Homeric Minimum is a grand solar minimum that took place between 2,800 and 2,550 years Before Present. It appears to coincide with, and have been the cause of, a phase of climate change at that time, which involved a wetter Western Europe and drier eastern Europe. This had far-reaching effects on human civilization, some of which may be recorded in Greek mythology and the Old Testament.

Fusa Miyake is a cosmic ray physicist at Nagoya University, Japan, whose work measuring isotope abundances led to recognition of so-called Miyake events. These have resulted in reconciling differences between dates from documents and materials such as ice-cores and tree rings.

References

  1. Jane Kirby (9 October 2023). "Biggest ever solar storm identified using ancient tree rings". Independent. Retrieved 9 October 2023.
  2. Nicolas Brehm, Marcus Christl, Timothy D. J. Knowles, Emmanuelle Casanova, Richard P. Evershed, Florian Adolphi, Raimund Muscheler, Hans-Arno Synal, Florian Mekhaldi, Chiara I. Paleari, Hanns-Hubert Leuschner, Alex Bayliss, Kurt Nicolussi, Thomas Pichler, Christian Schlüchter, Charlotte L. Pearson, Matthew W. Salzer, Patrick Fonti, Daniel Nievergelt, Rashit Hantemirov, David M. Brown, Ilya Usoskin & Lukas Wacker (7 March 2022). "Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE". Nature Communications. 13 (1): 1196. Bibcode:2022NatCo..13.1196B. doi:10.1038/s41467-022-28804-9. PMC   8901681 . PMID   35256613.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Usoskin, I.G.; Kromer, B.; Ludlow, F.; Beer, J.; Friedrich, F.; Kovaltsov, G.; Solanki, S.; Wacker, L. (2013). "The AD775 cosmic event revisited: the Sun is to blame". Astronomy and Astrophysics Letters. 552: L3. arXiv: 1302.6897 . Bibcode:2013A&A...552L...3U. doi: 10.1051/0004-6361/201321080 .
  4. 1 2 Cliver, Edward W.; Schrijver, Carolus; Shibata, Kazunari; Usoskin, Ilya G. (2022). "Extreme solar events". Living Reviews in Solar Physics. 19 (1): 2. arXiv: 2205.09265 . Bibcode:2022LRSP...19....2C. doi: 10.1007/s41116-022-00033-8 .
  5. Maehara, Hiroyuki; Shibayama, Tayuka; Notsu, Shota; Notsu, Yuta; Nagao, Takashi; Kusaba, Satoshi; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari (2012). "Super-flares on solar-type stars". Nature. 485 (7399): 478. Bibcode:2012Natur.485..478M. doi:10.1038/nature11063. PMID   22622572.
  6. Zhang, Qingyuan; Sharma, Utkarsh; Dennis, Jordan A.; Scifo, Andrea; Kuitems, Margot; Büntgen, Ulf; Owens, Mathew J.; Dee, Michael W.; Pope, Benjamin J. S. (2022). "Modelling cosmic radiation events in the tree-ring radiocarbon record". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 478 (2266). arXiv: 2210.13775 . Bibcode:2022RSPSA.47820497Z. doi:10.1098/rspa.2022.0497. S2CID   253107601.
  7. 1 2 Miyake, Fusa; Usoskin, Ilya; Poluianov, Stepan (2020). Miyake, Fusa; Usoskin, Ilya; Poluianov, Stepan (eds.). Extreme Solar Particle Storms: the hostile Sun. Bristol UK: Institute of Physics. doi:10.1088/2514-3433/ab404a. ISBN   978-0-7503-2232-4.
  8. Kornei, Katherine (6 March 2023). "Mystery of Ancient Space Superstorms Deepens: A fresh analysis of tree-ring data suggests barrages of cosmic radiation that washed over Earth centuries ago may have come from sources besides our sun". Scientific American. Retrieved 3 October 2023.
  9. Alex Wilkins (Oct 9, 2023). "Largest known solar storm struck Earth 14,300 years ago". New Scientist. 260 (3460): 9. Bibcode:2023NewSc.260Q...9W. doi:10.1016/S0262-4079(23)01892-4.
  10. 1 2 Edouard Bard; et al. (Oct 9, 2023). "A radiocarbon spike at 14 300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial". Philosophical Transactions of the Royal Society A. 381 (2261). Bibcode:2023RSPTA.38120206B. doi:10.1098/rsta.2022.0206. PMC   10586540 . PMID   37807686.
  11. "Largest Ever Solar Storm Identified in Ancient Tree Rings – Could Devastate Modern Technology and Cost Billions". 9 October 2023. Retrieved 9 October 2023.
  12. Brehm, Nicolas; Christl, Marcus; Knowles, Timothy D. J.; Casanova, Emmanuelle; Evershed, Richard P.; Adolphi, Florian; Muscheler, Raimund; Synal, Hans-Arno; Mekhaldi, Florian; Paleari, Chiara I.; Leuschner, Hanns-Hubert; Bayliss, Alex; Nicolussi, Kurt; Pichler, Thomas; Schlüchter, Christian; Pearson, Charlotte L.; Salzer, Matthew W.; Fonti, Patrick; Nievergelt, Daniel; Hantemirov, Rashit; Brown, David M.; Usoskin, Ilya; Wacker, Lukas (2022). "Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE". Nature Communications. 13 (1): 1196. Bibcode:2022NatCo..13.1196B. doi:10.1038/s41467-022-28804-9. PMC   8901681 . PMID   35256613.
  13. "Radiocarbon (14C)". www.isee.nagoya-u.ac.jp. 17 November 2021. Retrieved 2023-03-06.
  14. Miyake, F.; Nagaya, K.; Masuda, K.; Nakamura, T. (2012). "A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan". Nature . 486 (7402): 240–242. Bibcode:2012Natur.486..240M. doi:10.1038/nature11123. PMID   22699615.
  15. Usoskin, Ilya; Kovaltsov, Gennady (2012). "Occurrence of Extreme Solar Particle Events: Assessment from Historical Proxy Data". Astrophysical Journal. 757 (1): 92. arXiv: 1207.5932 . Bibcode:2012ApJ...757...92U. doi: 10.1088/0004-637X/757/1/92 .
  16. Miyake, Fusa; Masuda, Kimiaki; Nakamura, Toshio (2013). "Another rapid event in the carbon-14 content of tree rings". Nature Communications. 4: 1748. Bibcode:2013NatCo...4.1748M. doi: 10.1038/ncomms2783 . PMID   23612289. S2CID   256624509.
  17. "Faculty Profiles: MIYAKE Fusa". Nagoya University . Retrieved 17 October 2023. Degree: 博士(理学)( 2013.12 名古屋大学 )
  18. Price, Michael (13 April 2023). "Marking time: Radiocarbon timestamps left in ancient tree rings by cosmic ray bombardments can date historical events with unprecedented precision". Science . A previous version "Marking time: Cosmic ray storms can pin precise dates on history from ancient Egypt to the Vikings" appeared in Science, Vol 380, Issue 6641.
  19. Kuitems, Margot; et al. (20 October 2021). "Evidence for European presence in the Americas in AD 1021" (PDF). Nature. 601 (7893): 388–391. doi:10.1038/s41586-021-03972-8. PMC   8770119 . PMID   34671168. S2CID   239051036. Archived (PDF) from the original on 2022-10-09.