Ammonium perchlorate composite propellant

Last updated

Ammonium perchlorate composite propellant (APCP) is a solid rocket propellant. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but also by being cast into shape, as opposed to powder pressing as with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry.

Contents

Uses

Ammonium perchlorate composite propellant is typically for aerospace rocket propulsion where simplicity and reliability are desired and specific impulses (depending on the composition and operating pressure) of 180–260 s (1.8–2.5 km/s) are adequate. Because of these performance attributes, APCP has been used in the Space Shuttle Solid Rocket Boosters, aircraft ejection seats, and specialty space exploration applications such as NASA's Mars Exploration Rover descent stage retrorockets. In addition, the high-power rocketry community regularly uses APCP in the form of commercially available propellant "reloads", as well as single-use motors. Experienced experimental and amateur rocketeers also often work with APCP, processing the APCP themselves.

Composition

Uncured APCP for Space Launch System solid rocket boosters Ammonium Perchlorate Composite Propellant (uncured) is shaped by a Worker.png
Uncured APCP for Space Launch System solid rocket boosters

Overview

Ammonium perchlorate composite propellant is a composite propellant, meaning that it has both fuel and oxidizer combined into a homogeneous mixture, in this case with a rubbery binder as part of the fuel. The propellant is most often composed of ammonium perchlorate (AP), an elastomer binder such as hydroxyl-terminated polybutadiene (HTPB) or polybutadiene acrylic acid acrylonitrile prepolymer (PBAN), powdered metal (typically aluminium), and various burn rate catalysts. In addition, curing additives induce elastomer binder cross-linking to solidify the propellant before use. The perchlorate serves as the oxidizer, while the binder and aluminium serve as the fuel. Burn rate catalysts determine how quickly the mixture burns. The resulting cured propellant is fairly elastic (rubbery), which also helps limit fracturing during accumulated damage (such as shipping, installing, cutting) and high acceleration applications such as hobby or military rocketry. This includes the Space Shuttle missions, in which APCP was used for the two SRBs.

The composition of APCP can vary significantly depending on the application, intended burn characteristics, and constraints such as nozzle thermal limitations or specific impulse (Isp). Rough mass proportions (in high-performance configurations) tend to be about 70/15/15 AP/HTPB/Al, though fairly high performance "low-smoke" can have compositions of roughly 80/18/2 AP/HTPB/Al. While metal fuel is not required in APCP, most formulations include at least a few percent as a combustion stabilizer, propellant opacifier (to limit excessive infrared propellant preheating), and increase the temperature of the combustion gases (increasing Isp).

Common components

Oxidizers
High energy fuels
Low energy fuels acting as binders

Special considerations

Though increasing the ratio of metal-fuel to oxidizer up to the stoichiometric point increases the combustion temperature, the presence of an increasing molar fraction of metal oxides, particularly aluminium oxide (Al2O3) precipitating from the gaseous solution creates globules of solids or liquids that slow down the flow velocity as the mean molecular mass of the flow increases. In addition, the chemical composition of the gases changes, varying the effective heat capacity of the gas. Because of these phenomena, there exists an optimal non-stoichiometric composition for maximizing Isp of roughly 16% by mass, assuming the combustion reaction goes to completion inside the combustion chamber.

The combustion time of the aluminium particles in the hot combustion gas varies depending on aluminium particle size and shape. In small APCP motors with high aluminium content, the residence time of the combustion gases does not allow for full combustion of the aluminium and thus a substantial fraction of the aluminium is burned outside the combustion chamber, leading to decreased performance. This effect is often mitigated by reducing aluminium particle size, inducing turbulence (and therefore a long characteristic path length and residence time), and/or by reducing the aluminium content to ensure a combustion environment with a higher net oxidizing potential, ensuring more complete aluminium combustion. Aluminium combustion inside the motor is the rate-limiting pathway since the liquid-aluminium droplets (even still liquid at temperatures 3,000 K (2,730 °C; 4,940 °F)) limit the reaction to a heterogeneous globule interface, making the surface area to volume ratio an important factor in determining the combustion residence time and required combustion chamber size/length.

Particle size

The propellant particle size distribution has a profound impact on APCP rocket motor performance. Smaller AP and Al particles lead to higher combustion efficiency but also lead to increased linear burn rate. The burn rate is heavily dependent on mean AP particle size as the AP absorbs heat to decompose into a gas before it can oxidize the fuel components. This process may be a rate-limiting step in the overall combustion rate of APCP. The phenomenon can be explained by considering the heat-flux-to-mass ratio: As the particle radius increases the volume (and, therefore, mass and heat capacity) increases as the cube of the radius. However, the surface area increases as the square of the radius, which is roughly proportional to the heat flux into the particle. Therefore, a particle's rate of temperature rise is maximized when the particle size is minimized.

Common APCP formulations call for 30–400 μm AP particles (often spherical), as well as 2–50 μm Al particles (often spherical). Because of the size discrepancy between the AP and Al, Al will often take an interstitial position in a pseudo-lattice of AP particles.

Characteristics

Geometric

APCP deflagrates from the surface of exposed propellant in the combustion chamber. In this fashion, the geometry of the propellant inside the rocket motor plays an important role in the overall motor performance. As the surface of the propellant burns, the shape evolves (a subject of study in internal ballistics), most often changing the propellant surface area exposed to the combustion gases. The mass flux (kg/s) [and therefore pressure] of combustion gases generated is a function of the instantaneous surface area (m2), propellant density (kg/m3), and linear burn rate (m/s):

Several geometric configurations are often used depending on the application and desired thrust curve:

Burn rate

While the surface area can be easily tailored by careful geometric design of the propellant, the burn rate is dependent on several subtle factors:

In summary, however, most formulations have a burn rate between 1–3 mm/s at STP and 6–12 mm/s at 68 atm. The burn characteristics (such as linear burn rate) are often determined prior to rocket motor firing using a strand burner test. This test allows the APCP manufacturer to characterize the burn rate as a function of pressure. Empirically, APCP adheres fairly well to the following power-function model:

It is worth noting that typically for APCP, n is 0.3–0.5 indicating that APCP is sub-critically pressure sensitive. That is, if surface area were maintained constant during a burn the combustion reaction would not run away to (theoretically) infinite as the pressure would reach an internal equilibrium. This isn't to say that APCP cannot cause an explosion, just that it will not detonate. Thus, any explosion would be caused by the pressure surpassing the burst pressure of the container (rocket motor).

Model/high-power rocketry applications

A high-power rocket launch using an APCP motor Rocket.jpg
A high-power rocket launch using an APCP motor

Commercial APCP rocket engines usually come in the form of reloadable motor systems (RMS) and fully assembled single-use rocket motors. For RMS, the APCP "grains" (cylinders of propellant) are loaded into the reusable motor casing along with a sequence of insulator disks and o-rings and a (graphite or glass-filled phenolic resin) nozzle. The motor casing and closures are typically bought separately from the motor manufacturer and are often precision-machined from aluminium. The assembled RMS contains both reusable (typically metal) and disposable components.

The major APCP suppliers for hobby use are:

To achieve different visual effects and flight characteristics, hobby APCP suppliers offer a variety of different characteristic propellant types. These can range from fast-burning with little smoke and blue flame to classic white smoke and white flame. In addition, colored formulations are available to display reds, greens, blues, and even black smoke.

In the medium- and high-power rocket applications, APCP has largely replaced black powder as a rocket propellant. Compacted black powder slugs become prone to fracture in larger applications, which can result in catastrophic failure in rocket vehicles. APCP's elastic material properties make it less vulnerable to fracture from accidental shock or high-acceleration flights. Due to these attributes, widespread adoption of APCP and related propellant types in the hobby has significantly enhanced the safety of rocketry.

Environmental and other concerns

The exhaust from APCP solid rocket motors contains mostly water, carbon dioxide, hydrogen chloride, and a metal oxide (typically aluminium oxide). The hydrogen chloride can easily dissolve in water and create corrosive hydrochloric acid. The environmental fate of hydrogen chloride is not well documented. The hydrochloric acid component of APCP exhaust leads to the condensation of atmospheric moisture in the plume and this enhances the visible signature of the contrail. This visible signature, among other reasons, led to research in cleaner burning propellants with no visible signatures. Minimum signature propellants contain primarily nitrogen-rich organic molecules (e.g., ammonium dinitramide) and depending on their oxidizer source can be hotter burning than APCP composite propellants.

Regulation and legality

In the United States, APCP for hobby use is regulated indirectly by two non-government agencies: the National Association of Rocketry (NAR), and the Tripoli Rocketry Association (TRA). Both agencies set forth rules regarding the impulse classification of rocket motors and the level of certification required by rocketeers in order to purchase certain impulse (size) motors. The NAR and TRA require motor manufacturers to certify their motors for distribution to vendors and ultimately hobbyists. The vendor is charged with the responsibility (by the NAR and TRA) to check hobbyists for high-power rocket certification before a sale can be made. The amount of APCP that can be purchased (in the form of a rocket motor reload) correlates to the impulse classification, and therefore the quantity of APCP purchasable by a hobbyist (in any single reload kit) is regulated by the NAR and TRA.

The overarching legality concerning the implementation of APCP in rocket motors is outlined in NFPA 1125. Use of APCP outside hobby use is regulated by state and municipal fire codes. On March 16, 2009, it was ruled that APCP is not an explosive and that manufacture and use of APCP no longer requires a license or permit from the ATF. [1]

Footnotes

  1. JUL 07 2009 OPEN LETTER TO ALL FEDERAL EXPLOSIVES LICENSEES AND PERMITTEES

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder. The inception of gunpowder rockets in warfare can be credited to the ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Hybrid-propellant rocket</span> Rocket engine that uses both liquid / gaseous and solid fuel

A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s.

<span class="mw-page-title-main">Ammonium perchlorate</span> Chemical compound

Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propellant called ammonium perchlorate composite propellant. Its instability has involved it in a number of accidents, such as the PEPCON disaster.

<span class="mw-page-title-main">Model rocket</span> Small recreational rocket

A model rocket is a small rocket designed to reach low altitudes and be recovered by a variety of means.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket uses a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

Hydroxyl-terminated polybutadiene (HTPB) is an oligomer of butadiene terminated at each end with a hydroxyl functional group. It reacts with isocyanates to form polyurethane polymers.

<span class="mw-page-title-main">Polybutadiene acrylonitrile</span> Solid rocket motor fuel copolymer

Polybutadiene acrylonitrile (PBAN) copolymer, also noted as polybutadiene—acrylic acid—acrylonitrile terpolymer is a copolymer compound used most frequently as a rocket propellant fuel mixed with ammonium perchlorate oxidizer. It was the binder formulation widely used on the 1960s–1970s big boosters. It is also notably used in NASA's Space Launch System, likely reusing the design from its Space Shuttle counterpart.

Motors for model rockets and high-powered rockets are classified by total impulse into a set of letter-designated ranges, from ⅛A up to O. The total impulse is the integral of the thrust over burn time.

Rocket candy, or R-Candy, is a type of rocket propellant for model rockets made with a form of sugar as a fuel, and containing an oxidizer. The propellant can be divided into three groups of components: the fuel, the oxidizer, and the (optional) additive(s). In the past, sucrose was most commonly used as fuel. Modern formulations most commonly use sorbitol for its ease of production. The most common oxidizer is potassium nitrate (KNO3). Potassium nitrate is most commonly found in tree stump remover. Additives can be many different substances, and either act as catalysts or enhance the aesthetics of the liftoff or flight. A traditional sugar propellant formulation is typically prepared in a 65:35 (13:7) oxidizer to fuel ratio. This ratio can vary from fuel to fuel based on the rate of burn, timing and use.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Flare (countermeasure)</span> Aerial defence against heat-seeking missiles

A flare or decoy flare is an aerial infrared countermeasure used by an aircraft to counter an infrared homing ("heat-seeking") surface-to-air missile or air-to-air missile. Flares are commonly composed of a pyrotechnic composition based on magnesium or another hot-burning metal, with burning temperature equal to or hotter than engine exhaust. The aim is to make the infrared-guided missile seek out the heat signature from the flare rather than the aircraft's engines.

<span class="mw-page-title-main">Nitronium perchlorate</span> Chemical compound

Nitronium perchlorate, NO2ClO4, also known as nitryl perchlorate and nitroxyl perchlorate, is an inorganic chemical, the salt of the perchlorate anion and the nitronium cation. It forms colorless monoclinic crystals. It is hygroscopic, and is a strong oxidizing and nitrating agent. It may become hypergolic in contact with organic materials.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used in a rocket engine

Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

A black powder rocket motor propels a model rocket using black powder. Black powder rocket propellants consist of charcoal, sulfur, and potassium nitrate. Adjustments can be made to the amount of each component to change the rate at which the black powder burns.

Orion is a series of American solid-fuel rocket stages, developed and manufactured by a joint venture between Hercules Aerospace and Alliant Techsystems. They were originally developed for use as all three stages on the Pegasus rocket, first flown in 1990. Orion is available in several configurations for a variety of use scenarios. All stages in this family use an ammonium perchlorate composite propellant called QDL-1, which includes HTPB binder and 19% aluminium, with the exception of the yet-unflown Orion 32, which uses QDL-2, containing HTPB binder and 20% aluminium.

<span class="mw-page-title-main">Zefiro (rocket stage)</span>

Zefiro is a family of solid-fuel rocket motors developed by Avio and used on the European Space Agency Vega rocket. The name Zefiro derives from the acronym ZEro FIrst stage ROcket, conceived when this motor was intended to be used as first and second stages of San Marco program of the Italian Space Agency (ASI). The name also references the Greek god of the west wind, Zephyrus.

<span class="mw-page-title-main">P120C</span> Solid-fuel first-stage rocket motor

The P120C is a solid-fuel rocket motor designed for use as the first stage of the Vega-C and as the boosters of the Ariane 6 launch vehicles. The solid rocket motors were developed by Europropulsion, a joint venture of Avio and ArianeGroup, for the European Space Agency. The "C" in the name signifies its "Common" use across these vehicles.

Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment.

<span class="mw-page-title-main">Solid Rocket Motor Upgrade</span> American solid propellant rocket motor

The Solid Rocket Motor Upgrade (SRMU) was a solid rocket motor that was used as a booster on the Titan IVB launch vehicle. Developed by Hercules, it was intended to be a high-performance, low-cost upgrade to the UA1207 boosters previously used on Titan IV. Wound from carbon-fibre-reinforced polymer and burning a hydroxyl-terminated polybutadiene-bound ammonium perchlorate composite propellant, it was an ambitious upgrade building on Hercules' experience developing a filament-wound case for the Space Shuttle SRB. Originally intended to fly in 1990, it instead first flew in 1997 due to a protracted development and lack of demand. The SRMU performed successfully on all of its flights.

References