Minotaur-C

Last updated

Related Research Articles

<span class="mw-page-title-main">Delta II</span> American space launch system

Delta II was an expendable launch system, originally designed and built by McDonnell Douglas. Delta II was part of the Delta rocket family and entered service in 1989. Delta II vehicles included the Delta 6000, and the two later Delta 7000 variants. The rocket flew its final mission ICESat-2 on 15 September 2018, earning the launch vehicle a streak of 100 successful missions in a row, with the last failure being GPS IIR-1 in 1997.

Pegasus is an air-launched launch vehicle developed by Orbital Sciences Corporation (OSC) and now built and launched by Northrop Grumman. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remains active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft), and its first stage has a wing and a tail to provide lift and attitude control while in the atmosphere. Notably, the first stage does not have a thrust vector control (TVC) system.

Orbital Sciences Corporation was an American company specializing in the design, manufacture and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems to create a new company called Orbital ATK, Inc., which in turn was purchased by Northrop Grumman in 2018. The remnants of the former Orbital Sciences Corporation today are a subsidiary of Northrop Grumman known as Northrop Grumman Space Systems.

Minotaur (rocket family)

The Minotaur is a family of United States solid fuel launch vehicles derived from converted Minuteman and Peacekeeper intercontinental ballistic missiles (ICBM). They are built by Northrop Grumman via contract with the Air Force Space and Missile Systems Center's Space Development and Test Directorate (SMC/SD) as part of the Air Force's Rocket Systems Launch Program which converts retired Intercontinental Ballistic Missiles into space and test launch systems for U.S. government agencies.

Payload fairing Nose cone of a rocket used to protect spacecraft during launch

A payload fairing is a nose cone used to protect a spacecraft payload against the impact of dynamic pressure and aerodynamic heating during launch through an atmosphere. An additional function on some flights is to maintain the cleanroom environment for precision instruments. Once outside the atmosphere the fairing is jettisoned, exposing the payload to outer space.

Orbiting Carbon Observatory

The Orbiting Carbon Observatory (OCO) is a NASA satellite mission intended to provide global space-based observations of atmospheric carbon dioxide. The original spacecraft was lost in a launch failure on 24 February 2009, when the payload fairing of the Taurus rocket which was carrying it failed to separate during ascent. The added mass of the fairing prevented the satellite from reaching orbit. It subsequently re-entered the atmosphere and crashed into the Indian Ocean near Antarctica. The replacement satellite, Orbiting Carbon Observatory-2, was launched 2 July 2014 aboard a Delta II rocket. The Orbiting Carbon Observatory-3, a stand-alone payload built from the spare OCO-2 flight instrument, was installed on the International Space Station's Kibō Exposed Facility in May 2019.

Minotaur I Space launch vehicle

The Minotaur I, or just Minotaur is an American expendable launch system derived from the Minuteman II missile. It is used to launch small satellites for the US Government, and is a member of the Minotaur family of rockets produced by Orbital Sciences Corporation.

Castor (rocket stage) Solid-fuel orbital vehicle component

The Castor family of solid-fuel rocket stages and boosters built by Thiokol and used on a variety of launch vehicles. They were initially developed as the second-stage motor of the Scout rocket. The design was based on the MGM-29 Sergeant, a surface-to-surface missile developed for the United States Army at the Jet Propulsion Laboratory.

Glory (satellite) Failed NASA satellite mission

The Glory satellite was a planned NASA satellite mission that would have collected data on the chemical, micro-physical and optical properties—and the spatial and temporal distributions—of sulfate and other aerosols, and would have collected solar irradiance data for the long-term climate record. The science focus areas served by Glory included: atmospheric composition; carbon cycle, ecosystems, and biogeochemistry; climate variability and change; and water and energy cycles. The US$424 million satellite was lost on 4 March 2011, when its Taurus XL carrier rocket malfunctioned. A subsequent investigation revealed that the fairing system failed to open fully, causing the satellite to reenter the atmosphere at which point it likely broke up and burned. NASA investigators later determined the cause for the launch failure to be faulty materials provided by aluminum manufacturer Sapa Profiles.

<span class="mw-page-title-main">Antares (rocket)</span> Medium-lift expendable rocket by Northrop Grumman

Antares, known during early development as Taurus II, is an expendable launch system developed by Orbital Sciences Corporation and the Yuzhnoye Design Bureau to launch the Cygnus spacecraft to the International Space Station as part of NASA's COTS and CRS programs. Able to launch payloads heavier than 8,000 kg (18,000 lb) into low Earth orbit, Antares is currently the largest rocket operated by Northrop Grumman. Antares launches from the Mid-Atlantic Regional Spaceport and made its inaugural flight on April 21, 2013.

A-train (satellite constellation) Satellite constellation of four Earth observation satellites

The A-train is a satellite constellation of four Earth observation satellites of varied nationality in sun-synchronous orbit at an altitude of slightly variable for each satellite.

Minotaur IV

Minotaur IV, also known as Peacekeeper SLV and OSP-2 PK is an active expendable launch system derived from the LGM-118 Peacekeeper ICBM. It is operated by Northrop Grumman Innovation Systems, and made its maiden flight on 22 April 2010, carrying the HTV-2a Hypersonic Test Vehicle. The first orbital launch occurred on 26 September 2010 with the SBSS satellite for the United States Air Force.

<i>Stargazer</i> (aircraft) Aircraft

Stargazer is a Lockheed L-1011 TriStar built in 1974, that was modified in 1994 to be used by Orbital Sciences as a mother ship launch pad for the Pegasus launch vehicle. As of October 2019, 44 rockets have been launched from it, using the Pegasus-H and Pegasus-XL configurations. As of 2019, Stargazer is the only L-1011 airframe still airworthy.

KySat-1 was an American satellite which was to have been operated by Kentucky Space. Designed to operate for eighteen to twenty four months, it was lost in a launch failure in March 2011 after the Taurus launch vehicle carrying it failed to achieve orbit.

Hermes was an American satellite which was to have been operated by the Colorado Space Grant Consortium. Intended to perform technology demonstration experiments in low Earth orbit, it was lost during launch in March 2011 when the rocket that was carrying it failed to achieve orbit.

The Star is a family of US solid-propellant rocket motors originally developed by Thiokol and used by many space propulsion and launch vehicle stages. They are used almost exclusively as an upper stage, often as an apogee kick motor.

Orbiting Carbon Observatory 2

Orbiting Carbon Observatory-2 (OCO-2) is an American environmental science satellite which launched on 2 July 2014. A NASA mission, it is a replacement for the Orbiting Carbon Observatory which was lost in a launch failure in 2009. It is the second successful high-precision CO2 observing satellite, after GOSAT.

Northrop Grumman Innovation Systems (NGIS) was a sector of Northrop Grumman from 2018 through 2019. It was formed out of Orbital ATK Inc. a company which resulted from the merger of Orbital Sciences Corporation and parts of Alliant Techsystems in 2015. Orbital ATK was purchased by Northrop Grumman in 2018. Northrop Grumman Innovation Systems designed, built, and delivered space, defense, and aviation-related systems to customers around the world both as a prime contractor and as a merchant supplier. It had a workforce of approximately 12,000 employees dedicated to aerospace and defense including about 4,000 engineers and scientists; 7,000 manufacturing and operations specialists; and 1,000 management and administration personnel. With Northrop Grumman's reorganization of its divisions effective January 1, 2020, NGIS was split, with most of the sector merging with other Northrop Grumman businesses into a new Space Systems sector.

Small-lift launch vehicle Launch vehicle capable of lifting up to 2,000 kg (4,400 lb) into low Earth orbit

A small-lift launch vehicle is a rocket orbital launch vehicle that is capable of lifting up to 2,000 kg (4,400 lb) or up to 5,000 kilograms (11,000 lb) of payload into low Earth orbit (LEO). The next larger category consists of medium-lift launch vehicles.

References

  1. 1 2 Clark, Stephen (24 February 2014). "Taurus rocket on the market with new name, upgrades". Spaceflight Now. Retrieved 26 May 2014.
  2. "Minotaur-C_Factsheet.pdf" (PDF). northropgrumman.com.
  3. 1 2 Krebs, Gunter. "Taurus / Minotaur-C" . Retrieved 26 May 2014.
  4. 1 2 "Satellite to pinpoint sources and sinks of CO2".
  5. "Glory". NASA.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  6. 1 2 3 "NASA launch mishap: Satellite crashes into ocean". CBS. 4 March 2011.
  7. 1 2 "NASA science satellite lost in Taurus launch failure". Spaceflight Now. 4 March 2011.
  8. Clark, Stephen. "Taurus rocket on the market with new name, upgrades". Spaceflight Now. Retrieved 31 October 2017.
  9. "Taurus". Encyclopedia Astronautica. Archived from the original on 2 February 2007.
  10. 1 2 3 4 Krebs, Gunter. "Taurus-3110". Gunter's Space Page. Retrieved 8 March 2009.
  11. 1 2 "Minotaur-C Fact Sheet" (PDF). Orbital ATK. 2015. Archived from the original (PDF) on 30 September 2015. Retrieved 6 November 2016.
  12. "OCO". Orbital Sciences Corporation.
  13. 1 2 "Taurus rocket nose shroud dooms another NASA satellite". Spaceflight Now, March 2011.
  14. International reference guide to space launch systems, Fourth Edition, p. 486, ISBN   1-56347-591-X
  15. Failure hits Nasa's 'CO2 hunter'
  16. NASA FY2009 Budget Estimates PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  17. "Homepage: Orbiting Carbon Observatory-2 (OCO-2)". NASA. Jet Propulsion Laboratory. 2013. Archived from the original on 22 February 2003. Retrieved 5 April 2014.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  18. "NASA's OCO-2 brings sharp focus on global carbon". Phys Org. 3 April 2014. Retrieved 5 April 2014.
  19. "National Aeronautics and Space Administration | the White House". Office of Management and Budget . Archived from the original on 23 October 2020. Retrieved 17 February 2015 via National Archives.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  20. NASA. "Overview of the Glory Mishap Investigation Results for Public Release" (PDF). NASA. Retrieved 20 February 2013.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  21. After failed space flights, NASA investigation leads to Portland
  22. William Graham (27 June 2013). "Orbital's Pegasus XL successfully lofts IRIS spacecraft". NASASpaceFlight.com. The Orbital Boost Vehicle, developed for the US military's Ground Based Interceptor program, uses the upper stages of the Taurus
  23. "Antares". Gunter's Space Page.
Minotaur-C (Taurus)
Minotaur C launch (crop zoom).jpg
Minotaur-C launching its return-to-flight in 2017
FunctionOrbital launch vehicle
Manufacturer Orbital Sciences, Orbital ATK, Northrop Grumman
Country of origin United States
Cost per launchUS$40−50 million
Size
Height27.9 m (92 ft)[ citation needed ]
Diameter2.35 m (7 ft 9 in)[ citation needed ]
Mass73,000 kg (161,000 lb)[ citation needed ]
Stages4
Capacity
Payload to LEO
Mass1,458 kg (3,214 lb)