Mission type | Climatology |
---|---|
Operator | NASA |
Mission duration | Launch failure 2 years (planned) |
Spacecraft properties | |
Bus | LEOStar-2 |
Manufacturer | Orbital Sciences [1] |
Launch mass | 530 kg (1,170 lb) [1] |
Payload mass | 150 kg (330 lb) [1] |
Dimensions | Stowed: 2.3 × 1.4 m (7.5 × 4.6 ft) [1] |
Power | 786 W [1] |
Start of mission | |
Launch date | 24 February 2009, 09:55:31 UTC [2] |
Rocket | Taurus-XL 3110 (T8) |
Launch site | Vandenberg, LC-576E |
Contractor | Orbital Sciences |
Orbital parameters | |
Reference system | Geocentric |
Regime | Sun-synchronous |
The Orbiting Carbon Observatory (OCO) was a failed NASA satellite mission intended to provide global space-based observations of atmospheric carbon dioxide (CO2). The original spacecraft was lost in a launch failure on 24 February 2009, when the payload fairing of the Taurus rocket which was carrying it failed to separate during ascent. [3] The added mass of the fairing prevented the satellite from reaching orbit. [4] It subsequently re-entered the atmosphere and crashed into the Indian Ocean near Antarctica. [5] [6] The replacement satellite, Orbiting Carbon Observatory-2, was launched 2 July 2014 aboard a Delta II rocket. [7] [8] The Orbiting Carbon Observatory-3, a stand-alone payload built from the spare OCO-2 flight instrument, was installed on the International Space Station 's Kibō Exposed Facility in May 2019. [9]
OCO's measurements are designed to be accurate enough to show for the first time the geographic distribution of carbon dioxide sources and sinks on a regional scale. [10] The data is planned to improve the understanding of the global carbon cycle, the natural processes and human activities that influence the abundance and distribution of the greenhouse gas. This improved understanding is expected to enable more reliable forecasts of future changes in the abundance and distribution of carbon dioxide in the atmosphere and the effect that these changes may have on Earth's climate.
The OCO spacecraft was provided by Orbital Sciences Corporation. [11] During its two-year mission, OCO will fly in a near polar orbit which enables the instrument to observe most of Earth's surface at least once every sixteen days. It is intended to fly in loose formation with a series of other Earth-orbiting satellites known as the Earth Observing System Afternoon Constellation, or the A-train. This coordinated flight formation was intended to enable researchers to correlate OCO data with data acquired by other instruments on other spacecraft. In particular, Earth scientists would like to compare OCO data with nearly simultaneous measurements acquired by the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite and ground-based data from the Total Carbon Column Observing Network (TCCON). Alignment with the A-train demands a particularly short launch window of 30 seconds. [12]
The original cost of the mission was US$280 million. [13] It was sponsored by NASA's Earth System Science Pathfinder Program. [14] NASA's Jet Propulsion Laboratory in Pasadena, California, manages OCO for NASA's Science Mission Directorate.
The satellite will carry a single instrument designed to make the most precise measurements of atmospheric carbon dioxide ever made from space. The instrument consists of three parallel, high-resolution spectrometers, integrated into a common structure and fed by a common telescope. The spectrometers will make simultaneous measurements of the carbon dioxide and molecular oxygen absorption of sunlight reflected off the same location on Earth's surface when viewed in the near-infrared part of the electromagnetic spectrum, invisible to the human eye.
As sunlight passes through Earth's atmosphere and is reflected from Earth's surface, molecules of atmospheric gases absorb very specific colors of light. If the light is divided into a rainbow of colors, called a spectrum, the specific colors absorbed by each gas appear as dark lines. Different gases absorb different colors, so the pattern of absorption lines provides a telltale spectral "fingerprint" for that molecule. OCO's spectrometers were designed to detect these molecular fingerprints.
Each of the three spectrometers was tuned to measure the absorption in a specific range of colors. Each of these ranges includes dozens of dark absorption lines produced by either carbon dioxide or molecular oxygen. The amount of light absorbed in each spectral line increases with the number of molecules along the optical path. OCO's spectrometers measure the fraction of the light absorbed in each of these lines with very high precision. This information was then to be analyzed to determine the number of molecules along the path between the top of the atmosphere and the surface.
If the amount of carbon dioxide varies from place to place, the amount of absorption will also vary. To resolve these variations, the observatory's instrument will record an image of the spectrum produced by each spectrometer three times every second as the satellite flies over the surface at more than four miles per second. This information would then be transmitted to the ground, where carbon dioxide concentrations would be retrieved in four separate footprints for each image collected. These spatially varying carbon dioxide concentration estimates would then be analyzed using global transport models, like those used for weather prediction, to infer the locations of carbon dioxide sources and sinks. [15]
The OCO instrument was developed by Hamilton Sundstrand Sensor Systems in Pomona, California, and the Jet Propulsion Laboratory. [16]
The satellite was originally launched from Vandenberg Air Force Base in California on a dedicated Taurus XL rocket. However, the payload fairing—a clam shell-shaped covering that protects the satellite during launch—apparently failed to separate from the spacecraft. "We have not had a successful launch tonight and will not be able to have a successful OCO mission", NASA commentator George Diller said. [17]
A payload fairing is a clamshell-shaped cover that encloses and protects a payload on the pad and during early flight. Fairings are a standard component of expendable launch vehicles, and are always jettisoned as soon as possible after a rocket has climbed high enough for heating from air friction to no longer risk damaging the payload. The Taurus XL's fairing was intended to separate several seconds after stage 2 ignition. Its extra mass was not a significant factor during the flight of the larger lower stages, but kept the relatively small stage 3 from adding enough velocity to reach orbit. 17 minutes after liftoff the payload fell into the ocean near Antarctica. [18] NASA investigators later determined the cause for the launch failure to be faulty materials provided by aluminum manufacturer Sapa Profiles. [19]
Three days after the failed February 2009 launch, the OCO science team sent NASA headquarters a proposal to build and launch an OCO copy by late 2011. [20] On 1 February 2010, the FY 2011 NASA budget request did include $170 million for NASA to develop and fly a replacement for the Orbiting Carbon Observatory: OCO-2. [21]
NASA, in 2010, initially selected Orbital Sciences for launching the replacement in February 2013 on a Taurus XL 3110 from Vandenberg Air Force Base in California. [22] The launch of the Glory satellite took place on 4 March 2011 and ended in failure, like OCO. Then, in February 2012 both NASA and Orbital Sciences came to an agreement to terminate the launch contract. [23]
OCO-2 was initially scheduled for launch on 1 July 2014 at 09:56 UTC aboard a Delta II rocket, though that launch was scrubbed at 46 seconds on the countdown clock due to a faulty valve on the water suppression system that is used to flow water on the launch pad to dampen the acoustic energy during launch. The rocket launched 2 July at the same time. [7]
NASA Launch Services Program (LSP) investigators have determined the technical root cause for the Taurus XL launch failures of NASA's Orbiting Carbon Observatory (OCO) and Glory missions in 2009 and 2011, respectively: faulty materials provided by aluminium manufacturer, Sapa Profiles, Inc. (SPI). LSP's technical investigation led to the involvement of NASA's Office of the Inspector General and the U.S. Department of Justice (DOJ). The efforts of the DOJ, recently made public, resulted in the resolution of criminal charges and alleged civil claims against SPI, and its agreement to pay $46 million to the U.S. government and other commercial customers. This relates to a 19-year scheme that included falsifying thousands of certifications for aluminium extrusions to hundreds of customers. [24]
On 24 February 2009, a Taurus XL rocket (Taurus T8) carrying NASA's Orbiting Carbon Observatory (OCO) satellite failed to reach orbit. The Taurus T8 mission failed because the payload fairing did not separate during ascent, causing the rocket to not shed weight. As a result of the extra weight, the Taurus rocket failed to reach orbital velocity, resulting in a total loss of the mission. On 4 March 2011, another Taurus rocket (Taurus T9) carrying NASA's Glory scientific satellite failed to reach orbit. The Taurus T9 mission also concluded in a failure of the payload fairing to separate. The Taurus T8 and T9 missions both reentered earth's atmosphere resulting in break-up and/or burnup of the rocket and satellite, and any surviving pieces would have been dispersed in the Pacific Ocean near Antarctica. The combined cost of both mission failures was in excess of $700 million. This document's purpose is to provide a top-level outline of NASA's updated findings pertaining to the cause of both mishaps.
The Taurus T8 and T9 rockets both used 63-inch diameter payload fairings to cover and protect the spacecraft during ground operations and launch. The payload fairing halves are structurally joined and attached to the rocket using frangible joints. A frangible joint is a structural separation system that is initiated using ordnance. Initiation of the ordnance causes the ligament of the frangible joint extrusion to fracture, allowing the two payload fairing halves to be separated and subsequently jettisoned from the Taurus rocket. The frangible joints for T8 and T9 were made and assembled together, at the same time. The T8 and T9 frangible joint extrusions were manufactured by Sapa Profiles, Inc. (SPI) in its Technical Dynamics Aluminum (TDA) plant, in Portland, Oregon. [25]
Pegasus is an air-launched multistage rocket developed by Orbital Sciences Corporation (OSC) and later built and launched by Northrop Grumman. Pegasus is the world's first privately developed orbital launch vehicle. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remained active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft) using a first stage wing and a tail to provide lift and altitude control while in the atmosphere. The first stage does not have a thrust vector control (TVC) system.
Orbital Sciences Corporation was an American company specializing in the design, manufacture, and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems (ATK) to create a new company called Orbital ATK, which in turn was purchased by Northrop Grumman in 2018.
The Total Ozone Mapping Spectrometer (TOMS) was a NASA satellite instrument, specifically a spectrometer, for measuring the ozone layer. Of the five TOMS instruments which were built, four entered successful orbit. The satellites carrying TOMS instruments were:
Minotaur-C, formerly known as Taurus or Taurus XL, is a four stage solid fueled launch vehicle built in the United States by Orbital Sciences and launched from SLC-576E at California's Vandenberg Air Force Base. It is based on the air-launched Pegasus rocket from the same manufacturer, utilizing a "zeroth stage" in place of an airplane. The Minotaur-C is able to carry a maximum payload of around 1458 kg into a low Earth orbit (LEO).
The Minotaur is a family of United States solid-fuel launch vehicles repurposed from retired Minuteman and Peacekeeper model intercontinental ballistic missiles. Built by Northrop Grumman under the Space Force's Rocket Systems Launch Program, these vehicles are used for various space and test launch missions.
A payload fairing is a nose cone used to protect a spacecraft payload against the impact of dynamic pressure and aerodynamic heating during launch through an atmosphere. An additional function on some flights is to maintain the cleanroom environment for precision instruments. Once outside the atmosphere the fairing is jettisoned, exposing the payload to outer space.
Space Dynamics Laboratory (SDL) is a nonprofit government contractor owned by Utah State University. SDL is the sole University Affiliated Research Center (UARC) for the United States Missile Defense Agency; and, is one of 15 UARCs in the nation for the United States Department of Defense. Together with Utah State University, SDL has completed over 420 successful space missions and deployed over 500 independent hardware and software systems into space.
Submillimeter Wave Astronomy Satellite is a NASA submillimetre astronomy satellite, and is the fourth spacecraft in the Small Explorer program (SMEX). It was launched on 6 December 1998, at 00:57:54 UTC, from Vandenberg Air Force Base aboard a Pegasus XL launch vehicle. The telescope was designed by the Smithsonian Astrophysical Observatory (SAO) and integrated by Ball Aerospace, while the spacecraft was built by NASA's Goddard Space Flight Center (GSFC). The mission's principal investigator is Gary J. Melnick.
The Glory satellite was a 2011 failed NASA satellite mission that was to have collected data on the chemical, micro-physical and optical properties—and the spatial and temporal distributions—of sulfate and other aerosols, and also collect solar irradiance data for the long-term climate record. The science focus areas served by Glory included: atmospheric composition; carbon cycle, ecosystems, and biogeochemistry; climate variability and change; and water and energy cycles. The US$424 million satellite was lost on 4 March 2011, when its Taurus XL carrier rocket malfunctioned. A subsequent investigation revealed that the fairing system failed to open fully, causing the satellite to reenter the atmosphere at which point it likely broke up and burned. NASA investigators later determined the cause for the launch failure to be faulty materials provided by aluminum manufacturer Sapa Profiles.
The A-train is a satellite constellation of four Earth observation satellites of varied nationality in Sun-synchronous orbit at an altitude that is slightly variable for each satellite.
The year 2011 saw a number of significant events in spaceflight, including the retirement of NASA's Space Shuttle after its final flight in July 2011, and the launch of China's first space station module, Tiangong-1, in September. A total of 84 orbital launches were conducted over the course of the year, of which 78 were successful. Russia, China and the United States conducted the majority of the year's orbital launches, with 35, 19 and 18 launches respectively; 2011 marked the first year that China conducted more successful launches than the United States. Seven crewed missions were launched into orbit during 2011, carrying a total of 28 astronauts to the International Space Station. Additionally, the Zenit-3F and Long March 2F/G carrier rockets made their maiden flights in 2011, while the Delta II Heavy made its last.
Paul O. Wennberg is the R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering at the California Institute of Technology (Caltech). He is the director of the Ronald and Maxine Linde Center for Global Environmental Science. He is chair of the Total Carbon Column Observing Network and a founding member of the Orbiting Carbon Observatory project, which created NASA's first spacecraft for analysis of carbon dioxide in the atmosphere. He is also the principal investigator for the Mars Atmospheric Trace Molecule Occultation Spectrometer (MATMOS) to investigate trace gases in Mars's atmosphere.
Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry. Methane and nitrous oxide are measured by other instruments. Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and networks of ground stations such as the Integrated Carbon Observation System.
KySat-1 was an American satellite which was to have been operated by Kentucky Space. Designed to operate for eighteen to twenty four months, it was lost in a launch failure in March 2011 after the Taurus launch vehicle carrying it failed to achieve orbit.
Hermes was an American satellite which was to have been operated by the Colorado Space Grant Consortium. Intended to perform technology demonstration experiments in low Earth orbit, it was lost during launch in March 2011 when the rocket that was carrying it failed to achieve orbit.
Orbiting Carbon Observatory-2 (OCO-2) is an American environmental science satellite which launched on 2 July 2014. A NASA mission, it is a replacement for the Orbiting Carbon Observatory which was lost in a launch failure in 2009. It is the second successful high-precision CO2 observing satellite, after GOSAT.
TanSat, also known as CarbonSat, is a Chinese Earth observation satellite dedicated to monitoring carbon dioxide in Earth's atmosphere. It is generally classified as a minisatellite, and is the first dedicated carbon mission of the Chinese space program. The mission was formally proposed in 2010, and work began in January 2011. It is funded by the Ministry of Science and Technology (MOST) and was built by the Shanghai Institute of Microsystem And Information Technology (SIMIT).
Space-based measurements of carbon dioxide are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure CO2 was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision satellites. Different instrument designs may reflect different primary missions.
The Orbiting Carbon Observatory-3 (OCO-3) is a NASA-JPL instrument designed to measure carbon dioxide in Earth's atmosphere. The instrument is mounted on the Japanese Experiment Module-Exposed Facility on board the International Space Station (ISS). OCO-3 was scheduled to be transported to space by a SpaceX Dragon from a Falcon 9 rocket on 30 April 2019, but the launch was delayed to 3 May, due to problems with the space station's electrical power system. This launch was further delayed to 4 May due to electrical issues aboard Of Course I Still Love You (OCISLY), the barge used to recover the Falcon 9’s first stage. OCO-3 was launched as part of CRS-17 on 4 May 2019 at 06:48 UTC. The nominal mission lifetime is ten years.
Tropospheric Emissions: Monitoring of Pollution (TEMPO) is a space-based spectrometer designed to measure air pollution across greater North America at a high resolution and on an hourly basis. The ultraviolet–visible spectrometer will provide hourly data on ozone, nitrogen dioxide, and formaldehyde in the atmosphere.
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .
The observatory has just a 30-second opportunity to launch. The timing has to be so precise because OCO-2 will join the A-Train, a constellation of five other international Earth-observing satellites that fly very close together to make nearly simultaneous measurements of our planet. Launching a few seconds too early or late will prevent it from joining the right orbit track.