Atlas (rocket family)

Last updated
Atlas family
Atlas EELV family.png
Atlas II, III and V comparison
Role Expendable launch system with various applications
Manufacturer Convair
General Dynamics
Lockheed Martin
United Launch Alliance
First flightDecember 17, 1957;66 years ago (1957-12-17) [1]
Introduction1957
Status Atlas V (current)
Primary users United States Air Force
National Aeronautics and Space Administration
Produced1957–2010s (decade)
Variants SM-65 Atlas
SM-65D Atlas
Atlas LV-3C
Atlas IIIA
Atlas V

Atlas is a family of US missiles and space launch vehicles that originated with the SM-65 Atlas. The Atlas intercontinental ballistic missile (ICBM) program was initiated in the late 1950s under the Convair Division of General Dynamics. [2] Atlas was a liquid propellant rocket burning RP-1 kerosene fuel with liquid oxygen in three engines configured in an unusual "stage-and-a-half" or "parallel staging" design: two outboard booster engines were jettisoned along with supporting structures during ascent, while the center sustainer engine, propellant tanks and other structural elements remained connected through propellant depletion and engine shutdown.

Contents

The Atlas name was originally proposed by Karel Bossart and his design team working at Convair on project MX-1593. Using the name of a mighty titan from Greek mythology reflected the missile's place as the biggest and most powerful at the time. It also reflected the parent company of Convair, the Atlas Corporation. [3]

The missiles saw only brief ICBM service, and the last squadron was taken off operational alert in 1965. However, from 1962 to 1963 Atlas boosters launched the first four US astronauts to orbit the Earth (in contrast to the preceding two Redstone suborbital launches). The Atlas-Agena and Atlas-Centaur satellite launch vehicles were also derived directly from the original Atlas. The Atlas-Centaur was evolved into the Atlas II, various models of which were launched 63 times between 1991 and 2004. There were only six launches of the succeeding Atlas III, all between 2000 and 2005. The Atlas V is still in service, with launches planned into the mid 2020s.

More than 300 Atlas launches have been conducted from Cape Canaveral Space Force Station in Florida and 285 from Vandenberg Space Force Base in California.

Launch vehicles based on original Atlas ICBM

The Atlas was used as an expendable launch system, with both the Agena and Centaur upper stages, for the Mariner space probes used to explore Mercury, Venus, and Mars (1962–1973); and to launch ten of the Mercury program missions (1962–1963).[ citation needed ]

SM-65 Atlas missile

SM-65A Atlas missile, 1958 Atlas missile launch.jpg
SM-65A Atlas missile, 1958

The first successful test launch of an SM-65 Atlas missile was on 17 December 1957. [1] Approximately 350 Atlas missiles were built. [4]

The Atlas boosters would collapse under their own weight if not kept pressurized with nitrogen gas in the tanks when devoid of propellants. The Atlas booster was unusual in its use of "balloon" tanks. The rockets were made from very thin stainless steel that offered minimal or no rigid support. It was pressure in the tanks that gave the rigidity required for space flight. In order to save weight they were not painted and needed a specially designed oil to prevent rust. This was the original use of WD-40 water displacement oil. [5]

The SM-65 Atlas was used as a first stage for satellite launch vehicles for half a century. Many were eventually converted to orbital launch vehicles after they were removed from service as missiles. Missiles converted into Atlas E/F "space boosters" were used to launch the early "Block I" GPS satellites. [6]

SM-65B Atlas SCORE launch

Atlas-B with SCORE payload, at LC-11, 1958 Atlas-B with Score payload.jpg
Atlas-B with SCORE payload, at LC-11, 1958

Early Atlas rockets were also built specifically for non-military uses. On 18 December 1958, an Atlas was used to launch the Signal Communication by Orbiting Relay Equipment (SCORE) satellite, which was "the first prototype of a communications satellite, and the first test of any satellite for direct practical applications." [7] [8] [9] The communications payload was placed into low Earth orbit on Atlas serial number 10B without an upper stage. Atlas 10B/SCORE, at 8,750 lb (3,970 kg) was the heaviest artificial object then in orbit, the first voice relay satellite, and the first human-made object in space easily visible to the naked eye due to the large, mirror-polished stainless steel tank. This was the first flight in what would be a long career for the Atlas as a satellite launcher.

Atlas-D based launchers

Atlas D missile-derived SLV-3s were used for orbital launches with the RM-81 Agena and Centaur upper stages. The modified Atlas LV-3B was used for the orbital element of Project Mercury, launching four crewed Mercury spacecraft into low Earth orbit. [10] Atlas D launches were conducted from Cape Canaveral Air Force Station, at Launch Complexes 11, 12, 13 and 14, and Vandenberg AFB Launch Complex 576.[ citation needed ]

Two suborbital stage and a half vehicles were used during Project FIRE as sounding rockets. [10]

By 1979, Atlas space launcher variants had been whittled down to just the Atlas-Centaur and some refurbished ICBMs. The launch rate of Atlases decreased in the 1980s due to the advent of the Space Shuttle, but Atlas launches continued until 2004, when the last "classic" Atlas with balloon tanks and the jettisonable booster section launched a comsat for the Air Force. [11]

Mercury program

Mercury-Atlas 9 at Launch Complex 14 LOC-63C-1556.jpg
Mercury-Atlas 9 at Launch Complex 14

Atlas boosters were also used for the last four crewed Project Mercury missions, the first United States crewed space program. On February 20, 1962, it launched Friendship 7, which made three Earth orbits carrying John Glenn, the first United States astronaut to orbit the Earth. Identical Atlas boosters successfully launched three more crewed Mercury orbital missions from 1962 to 1963.

Atlas saw the beginnings of its "workhorse" status during the Mercury-Atlas missions, which resulted in Lt. Col. John H. Glenn Jr. becoming the first American to orbit the Earth in 1962 (Major Yuri A. Gagarin, a Soviet cosmonaut, was the first human in orbit in 1961.) Atlas was also used throughout the mid-1960s to launch the Agena Target Vehicles used during the Gemini program.

Atlas-Agena

Beginning in 1960, the Agena upper stage, powered by hypergolic propellant, was used extensively on Atlas launch vehicles. The United States Air Force, NRO and CIA used them to launch SIGINT satellites. [12] NASA used them in the Ranger program to obtain the first close-up images of the surface of the Moon and for Mariner 2, the first spacecraft to fly by another planet. Each of the Agena target vehicles used for the later space rendezvous practice missions of Gemini was launched on an Atlas rocket.

Atlas-Centaur

The Atlas-Centaur was an expendable launch system derived from the SM-65D Atlas missile.[ citation needed ] Launches were conducted from two pads of the Launch Complex 36 at Cape Canaveral Air Force Station, Florida. The Atlas' engines were upgraded and the structure reinforced for the large upper stage, along with elongated propellant tanks.

The first launch attempt of an Atlas-Centaur in May 1962 failed, the rocket exploding after take-off. Footage of this was shown in the penultimate shot of the 1983 art film Koyaanisqatsi , directed by Godfrey Reggio.

Beginning in 1963, the liquid hydrogen-fueled Centaur upper stage was also used on dozens of Atlas launches. NASA launched the Surveyor program lunar lander spacecraft and most of the Mars-bound Mariner program spacecraft with Atlas-Centaur launch vehicles.

Atlas E/F

Following retirement as an ICBM, the Atlas-E, along with the Atlas-F, was refurbished for orbital launches. [10]

The last Atlas E/F spacecraft launch was conducted on 24 March 1995, using a rocket which had originally been built as an Atlas-E. The last Atlas E/F launch to use a rocket which had originally been built as an Atlas-F was conducted on 23 June 1981. [13]

Atlas E/F was used to launch the Block I series of GPS satellites from 1978 to 1985. The last refurbished Atlas-F vehicle was launched from Vandenberg AFB in 1995 carrying a satellite for the Defense Meteorological Satellite Program. [14]

Tabulated

Model nameFirst launchLast launchTotal launchesSuccessesICBM baseUpper stageNotable payloadsRemarks
Atlas-Vega [15] --00Atlas Estorable propellant stagenoneDevelopment was essentially identical to Atlas-Agena, and cancelled accordingly in 1959
Atlas-Able 1959196030Atlas-D/Able(Delta-A) [16] Altair Pioneer P-3, Pioneer P-30, Pioneer P-31
Atlas-Able.jpg
2 rockets failed during static firing, and 3 during attempts to launch Pioneer spacecraft to the Moon
Atlas LV-3A196019684938Atlas D Agena Mariner 2, Ranger program, Missile Defense Alarm System
Atlas Agena launching Lunar Orbiter 4.jpg
The baseline Atlas-Agena sub-family vehicle
Atlas LV-3B 1959196399Atlas Dnone Friendship 7, Aurora 7, Sigma 7, Faith 7
Mercury-Atlas 2 liftoff.jpg
Human-rated Atlas LV-3A
Atlas SLV-3 196419685146Atlas D Agena Corona, KH-7 Gambit same as LV-3A except reliability improvements
Atlas SLV-3A19691978109Atlas D Agena Canyon same as SLV-3 except stretched 2.97 m
Atlas SLV-3B [17] 1966196611Atlas D Agena D Orbiting Astronomical Observatory 1
Atlas LV-3C19631967118Atlas D Centaur C Surveyor 1
Surveyor 1 launch.jpg
The baseline Atlas-Centaur sub-family vehicle
Atlas SLV-3C196719721714Atlas D Centaur D ?Same as LV-3C stretched 1.3 m
Atlas SLV-3D197319833229Atlas D Centaur D1A Mariner 10
Atlas-Centaur with Mariner 10 at LC 36B.jpg
Same as SLV-3C except Centaur uprated and Atlas electronics integrated with Centaur
Atlas G 1984198764Atlas G Centaur D1A ?
Atlas-G.jpg
Same as SLV-3D but Atlas longer by 2.06 m
Atlas I 19901997118Atlas G derived Centaur D1A derived CRRES [18]
Atlas I launching CRRES satellite1.jpg
Same as Atlas G except strengthened for 4.27 m payload fairing and ring laser gyro added.
Atlas II 199119981010Atlas G derived Centaur D1A derived Eutelsat
DF-SC-99-00074 cropped and rotated.jpeg
Same as Atlas I except Atlas stretched 2.74 m, engines uprated, added hydrazine roll control, fixed foam insulation, deleted verniers, and Centaur stretched 0.9 m. Development done by General Dynamics (now part of Lockheed Martin).
Atlas IIA 199220022323Atlas G derived Centaur D1A derived-Same as Atlas II except Centaur RL10 engines uprated to 88 kN of thrust and 6.5 Isp increase from extendible RL10 nozzles
Atlas IIAS 199320043030Atlas G derived[ citation needed ] Centaur D1A derived-Same as Atlas IIA except 4 Castor IVA strap-on boosters added
Atlas D-OV1 1965196776Atlas DnoneOV (Orbiting Vehicle) flights
Atlas D OV1 with OV1-2 1965-10-05.gif
ICBM refurbished for orbital launch
Atlas E 198019952321Atlas Enone
Atlas-E-F with solid fuel upper stage.jpg
ICBM refurbished for orbital launch
Atlas F 196819812322Atlas Fnone ?ICBM refurbished for orbital launch
Atlas H 1983198755Modified Atlas G Centaur stage removed NOSS satellites
Atlas-H.jpg
Atlas G modified for West Coast Avionics. SLC 3E modified for Space Booster hold down system versus weapon system flyaway

RD-180 era

Atlas III

The first stage of the Atlas III discontinued the use of three engines and 1.5 staging in favor of a single Russian-built Energomash RD-180 engine, while retaining the stage's balloon tank construction. The Atlas III continued to use the Centaur upper stage, available with single or dual RL10 engines. [19]

Atlas V

Atlas V(401) launches with LRO and LCROSS cropped.jpg
Launch of an Atlas V 401 carrying the LRO and LCROSS

The Atlas V, currently in service, was developed by Lockheed Martin as part of the US Air Force Evolved Expendable Launch Vehicle (EELV) program. The first was launched on August 21, 2002. In 2006, operation was transferred to United Launch Alliance (ULA), a joint venture between Lockheed Martin and Boeing. Lockheed Martin continued to market the Atlas V to commercial customers until September 2021, when it announced that the rocket will be retired after fulfilling the remaining 29 launch contracts. [20] [21] Atlas V is built in Decatur, Alabama, and maintains two launch sites: Space Launch Complex 41 at Cape Canaveral Space Force Station and Space Launch Complex 3-E at Vandenberg Space Force Base.

The Atlas V's first stage is called the Common Core Booster (CCB), which continues to use the Energomash RD-180 introduced in the Atlas III, but employs a rigid framework instead of balloon tanks. The rigid fuselage is heavier, but easier to handle and transport, eliminating the need for constant internal pressure. Up to five Aerojet Rocketdyne strap-on solid rocket boosters can be used to augment first stage thrust. The upper stage remains the Centaur, powered by a single or dual Aerojet Rocketdyne RL10 engines. [22]

Model nameFirst launchLast launchTotal launchesSuccesses1st-stage enginesUpper-stage enginesNotable payloadsRemarks
Atlas IIIA 20002004221xRD-180 1xRL10A Eutelsat W4
Atlas III Centaur.jpg
Major revision of Atlas IIA, with new RD-180 first-stage engine, normal staging, first stage stretched 4.4 m and strengthened. First single RL10 engine Centaur.
Atlas IIIB 20022005441xRD-180 1xRL10ASame as Atlas IIIA, except for Centaur stretched 1.7 m and an optional dual engine Centaur.
Atlas V 4002002202259581xRD-180 1xRL10A Lunar Reconnaissance Orbiter, LCROSS, Mars Reconnaissance Orbiter
Atlas V(401) launches with LRO and LCROSS cropped.jpg
Major revision of Atlas III, with new first-stage structure (CCB) and with optional solid strap-on boosters.
Atlas V 5002003-18181xRD-180 1xRL10A New Horizons, X-37B, Mars Science Laboratory
Atlas V 501 launch with NROL-41.jpg
Revision of Atlas V 400, with optional solid strap-on boosters, and Centaur stage encapsulated inside 5.4 m payload fairing.
Atlas V N222019-211xRD-180 2xRL10A Starliner Boeing OFT
Boeing OFT-2 Liftoff (KSC-20220519-PH-KNO01 0022).jpg
Revision of Atlas V with optional two solid strap-on boosters, and no Centaur 5.4 m payload fairing, but the Starliner spacecraft.

RD-180 phaseout

In 2014, US Congress passed legislation restricting the purchase and use of the Russian-supplied RD-180 engine used on the first stage booster of the Atlas V. [23] Formal study contracts were issued in June 2014 to a number of US rocket engine suppliers. [24]

In September 2014, ULA announced that it had entered into a partnership with Blue Origin to develop the BE-4 LOX/methane engine to replace the RD-180 on the new Vulcan rocket. The engine has been in development for 8 years by Blue Origin, and ULA expects the new stage and engine to start flying no earlier than 2022.

In December 2014, legislation to prevent the award of further military launch contracts to vehicles that use Russian-made engines was approved by the US Congress. The bill allows ULA to continue to use the 29 RD-180 engines already on order at the time. [25] In September 2021, ULA announced that Atlas V will be retired after they fulfill their remaining launch contracts, and that all remaining RD-180s for the remaining rockets have been delivered. [21]

Formerly proposed launch vehicles

Prior to the April 2015 announcement of the Vulcan launch vehicle, during the first decade since ULA was formed from Lockheed Martin and Boeing, there were a number of proposals and concept studies of future launch vehicles. None were subsequently funded for full-up development. Two of those concepts were the Atlas V Heavy and the Atlas Phase 2.

Atlas V Heavy

The Atlas V Heavy was a ULA concept proposal that would have used three Common Core Booster (CCB) stages strapped together to provide the capability necessary to lift 25 tonne payload to low Earth orbit.[ citation needed ] ULA stated that approximately 95% of the hardware required for the Atlas HLV had already been flown on the Atlas V single-core vehicles.[ citation needed ]

A 2006 report, prepared by RAND Corporation for the Office of the Secretary of Defense, stated that Lockheed Martin had decided not to develop an Atlas V heavy-lift vehicle (HLV). [26] The report recommended for the Air Force and the National Reconnaissance Office to "determine the necessity of an EELV heavy-lift variant, including development of an Atlas V Heavy", and to "resolve the RD-180 issue, including coproduction, stockpile, or U.S. development of an RD-180 replacement." [27] [ needs update ]

The lifting capability of the Atlas V HLV was to be roughly equivalent to the Delta IV Heavy. The latter utilizes RS-68 engines developed and produced domestically by Pratt & Whitney Rocketdyne. [28]

Atlas V Phase 2

After December 2006, with the merger of Boeing and Lockheed-Martin space operations into United Launch Alliance, the Atlas V program gained access to the tooling and processes for 5.4 m diameter stages used on Delta IV. A 5.4 m diameter stage could have conceivably accepted dual RD-180 engines. The resulting conceptual heavy-lift vehicle was called "Atlas Phase 2" or "PH2" in the 2009 Augustine Report. An Atlas V PH2-Heavy (three 5 m stages in parallel; six RD-180s) along with Shuttle-derived, Ares V and Ares V Lite, were considered as a possible heavy lifter concept for use in future space missions in the Augustine Report. [29] The Atlas PH2 HLV concept vehicle would have notionally been able to launch a payload mass of approximately 70 metric tons into an orbit of 28.5 degree-inclination. [29] The concept did not proceed onto full development, and was never built.

See also

Related Research Articles

<span class="mw-page-title-main">Titan (rocket family)</span> Family of launch vehicles used in U.S. Air Force and space programs (1959–2005)

Titan was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contributed the majority of the 368 Titan launches, including all the Project Gemini crewed flights of the mid-1960s. Titan vehicles were also used to lift US military payloads as well as civilian agency reconnaissance satellites and to send interplanetary scientific probes throughout the Solar System.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages that has been in use since 1962. It is currently produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V has been developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

The SM-65 Atlas was the first operational intercontinental ballistic missile (ICBM) developed by the United States and the first member of the Atlas rocket family. It was built for the U.S. Air Force by the Convair Division of General Dynamics at an assembly plant located in Kearny Mesa, San Diego.

<span class="mw-page-title-main">RM-81 Agena</span> American rocket upper stage and satellite bus

The RM-81 Agena was an American rocket upper stage and satellite bus which was developed by Lockheed Corporation initially for the canceled WS-117L reconnaissance satellite program. Following the split-up of WS-117L into SAMOS and Corona for image intelligence, and MIDAS for early warning, the Agena was later used as an upper stage, and an integrated component, for several programs, including Corona reconnaissance satellites and the Agena Target Vehicle used to demonstrate rendezvous and docking during Project Gemini. It was used as an upper stage on the Atlas, Thor, Thorad and Titan IIIB rockets, and considered for others including the Space Shuttle and Atlas V. A total of 365 Agena rockets were launched between February 28, 1959 and February 1987. Only 33 Agenas carried NASA payloads and the vast majority were for DoD programs.

<span class="mw-page-title-main">Delta IV</span> Active expendable launch system in the Delta rocket family

Delta IV was a group of five expendable launch systems in the Delta rocket family introduced in the early 2000s. Originally designed by Boeing's Defense, Space and Security division for the Evolved Expendable Launch Vehicle (EELV) program, the Delta IV became a United Launch Alliance (ULA) product in 2006. The Delta IV was primarily a launch vehicle for United States Air Force (USAF) military payloads, but was also used to launch a number of United States government non-military payloads and a single commercial satellite.

<span class="mw-page-title-main">National Security Space Launch</span> Expendable launch system program of the United States Space Force

National Security Space Launch (NSSL) is a program of the United States Space Force (USSF) intended to assure access to space for United States Department of Defense and other United States government payloads. The program is managed by the Assured Access to Space Directorate (SSC/AA) of the Space Force's Space Systems Command (SSC), in partnership with the National Reconnaissance Office.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Titan IIIB</span>

Titan IIIB was the collective name for a number of derivatives of the Titan II ICBM and Titan III launch vehicle, modified by the addition of an Agena upper stage. It consisted of four separate rockets. The Titan 23B was a basic Titan II with an Agena upper stage, and the Titan 24B was the same concept, but using the slightly enlarged Titan IIIM rocket as the base. The Titan 33B was a Titan 23B with the Agena enclosed in an enlarged fairing, in order to allow larger payloads to be launched. The final member of the Titan IIIB family was the Titan 34B which was a Titan 24B with the larger fairing used on the Titan 33B.

<span class="mw-page-title-main">Titan IIIC</span> Expendable launch system used by the US Air Force

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.

<span class="mw-page-title-main">Atlas II</span> American rocket

Atlas II was a member of the Atlas family of launch vehicles, which evolved from the successful Atlas missile program of the 1950s. The Atlas II was a direct evolution of the Atlas I, featuring longer first stage tanks, higher-performing engines, and the option for strap-on solid rocket boosters. It was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. Sixty-three launches of the Atlas II, IIA and IIAS models were carried out between 1991 and 2004; all sixty-three launches were successes, making the Atlas II a highly reliable space launch system. The Atlas line was continued by the Atlas III, used between 2000 and 2005, and the Atlas V which is still in use.

<span class="mw-page-title-main">Atlas-Centaur</span> Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida. After a strenuous flight test program, Atlas-Centaur went on to launch several crucial spaceflight missions for the United States, including Surveyor 1, Mariner 4, and Pioneer 10/11. The vehicle would be continuously developed and improved into the 1990s, with the last direct descendant being the highly successful Atlas II.

<span class="mw-page-title-main">Atlas V</span> Expendable launch system

Atlas V is an expendable launch system and the fifth major version in the Atlas launch vehicle family. It was originally designed by Lockheed Martin, now being operated by United Launch Alliance (ULA), a joint venture between Lockheed Martin and Boeing. It is used for DoD, NASA, and Commercial payloads. It is America's longest-serving active rocket. After 87 launches, in August 2021 ULA announced that Atlas V would be retired, and all 29 remaining launches had been sold. As of 6 October 2023, 17 launches remain.

<span class="mw-page-title-main">RD-180</span> Russian rocket engine

The RD-180 is a rocket engine designed and built in Russia. It features a dual combustion chamber, dual-nozzle design and is fueled by a RP-1/LOX mixture. The RD-180 is derived from the RD-170/RD-171 line of rocket engines, which were used in the Soviet Energia launch vehicle. The engine was developed for use on the US Atlas III and Atlas V launch vehicles and first flew in 2000. It was never used on any other rocket. The engine has flown successfully on all six Atlas III flights and on 87 Atlas V flights, with no failures.

<span class="mw-page-title-main">Vandenberg Space Launch Complex 3</span> Launch site at Vandenberg Space Force Base in California

Space Launch Complex 3 (SLC-3) is a launch site at Vandenberg Space Force Base that consists of two separate launch pads. SLC-3E (East) was used by the Atlas V launch vehicle before it was decommissioned in August 2021 with the final launch taking place on November 10,2022 at 09:49, while SLC-3W (West) has been demolished.

<span class="mw-page-title-main">United Launch Alliance</span> Joint venture of Lockheed Martin and Boeing

United Launch Alliance, LLC, commonly referred to as ULA, is an American aerospace manufacturer, defense contractor and launch service provider that manufactures and operates rocket vehicles that launch spacecraft into orbits around Earth and other bodies in the Solar System. ULA also designed and builds the Interim Cryogenic Propulsion Stage for the Space Launch System (SLS).

<span class="mw-page-title-main">Atlas III</span> American medium expendable launch vehicle

The Atlas III was an American orbital launch vehicle, used in the years between 2000 and 2005. It was developed from the highly successful Atlas II rocket and shared many components. It was the first member of the Atlas family since the Atlas A to feature a "normal" staging method, compared to the previous Atlas family members, which were equipped with two jettisonable outboard engines on the first (booster) stage. The Atlas III was developed further to create the Atlas V, which still flies to this day.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

Thor was a US space launch vehicle derived from the PGM-17 Thor intermediate-range ballistic missile. The Thor rocket was the first member of the Delta rocket family of space launch vehicles. The last launch of a direct derivative of the Thor missile occurred in 2018 as the first stage of the final Delta II.

The Atlas SLV-3, or SLV-3 Atlas was an American expendable launch system derived from the SM-65 Atlas / SM-65D Atlas missile. It was a member of the Atlas family of rockets.

<span class="mw-page-title-main">Vulcan Centaur</span> United Launch Alliance launch vehicle

Vulcan Centaur is a two-stage-to-orbit, heavy-lift launch vehicle developed by United Launch Alliance (ULA). It is principally designed to meet launch demands for the U.S. government's National Security Space Launch (NSSL) program for use by the United States Space Force and U.S. intelligence agencies for national security satellite launches. It will replace both of ULA's existing heavy-lift launch systems due to their retirement. Vulcan Centaur will also be used for commercial launches, including an order for 38 launches from Kuiper Systems.

References

  1. 1 2 Rusty Barton. "Atlas ICBM Chronology". Archived from the original on 2006-02-04.
  2. Deny Rocket Lag. Atlas Firing Keynotes U.S. Missile Build-Up, 1959/01/29 (1959). Universal Newsreel. 1959. Retrieved February 22, 2012.
  3. Helen T. Wells; Susan H. Whiteley & Carrie E. Karegeannes. Origin of NASA Names. NASA Science and Technical Information Office. pp. 8–9.
  4. "This week in history - Feb. 26, 1954: Air Force awards contract for Atlas ICBM propulsion system". U.S. Air Force. February 28, 2013. Retrieved March 29, 2023.
  5. "WD-40 History | Learn the Stories Behind the WD-40 Brand | WD-40". www.wd40.com. Retrieved 2022-06-15.
  6. "Atlas E". Encyclopedia Astronautica. Archived from the original on March 5, 2002. Retrieved 28 October 2014.
  7. "Project SCORE". Patterson Army Health Clinic. Archived from the original on 2007-06-24.
  8. "SCORE (Signal Communication by Orbiting Relay Equipment)". GlobalSecurity.org. Retrieved 28 October 2014.
  9. Video: Atlas In Orbit. Radios Ike's Message Of Peace To World, 1958/12/22 (1958). Universal Newsreels. 1958. Retrieved 20 February 2012.
  10. 1 2 3 "Encyclopedia Astronautica – Atlas A". Astronautix.com. Archived from the original on 22 May 2013. Retrieved 19 July 2013.
  11. Tariq Malik (August 31, 2004). "Final Atlas 2 Rocket Orbits Classified U.S. Satellite". space.com. Retrieved March 29, 2023.
  12. Mark Wade. "Atlas/Agena D SLV-3A". Astronautix.com. Archived from the original on August 27, 2002. Retrieved 28 October 2014.
  13. "Atlas F". spacelaunchnow.me. Retrieved March 29, 2023.
  14. Krebs, Gunter D. "DMSP-5D2 F6, 7, 8, 9, 10, 11, 12, 13, 14". Gunter's Space Page. Retrieved April 1, 2023.
  15. "Atlas Vega". Astronautix.com. Archived from the original on August 24, 2016. Retrieved 28 October 2014.
  16. "Delta A". Astronautix.com. Archived from the original on May 25, 2002. Retrieved 28 October 2014.
  17. "Atlas-SLV3B Agena-D". Space.skyrocket.de. Retrieved 28 October 2014.
  18. "Atlas I". Encyclopedia Astronautica. Archived from the original on August 27, 2002. Retrieved 28 October 2014.
  19. "Space Launch Report: Atlas III Data Sheet". 1 Dec 2005. Archived from the original on 6 Apr 2022.
  20. "Lockheed Martin Ready For Launch Of Intelsat 14 Spacecraft". Lockheed Martin. November 11, 2009. Archived from the original on 17 December 2011. Retrieved 28 October 2014.
  21. 1 2 Roulette, Joey (26 August 2021). "ULA stops selling its centerpiece Atlas V, setting path for the rocket's retirement". The Verge. Retrieved 1 September 2021.
  22. "Evolved Expendable Launch Vehicle". Afspc.af.mil. March 2009. Archived from the original on 27 April 2014. Retrieved 28 October 2014.
  23. "ULA Could Buy as Many as 30 More Russian-made RD-180 Engines". SpaceNews. 2015-01-20. Retrieved 2015-04-13.
  24. Ferster, Warren (2014-09-17). "ULA To Invest in Blue Origin Engine as RD-180 Replacement". Space News. Archived from the original on September 18, 2014. Retrieved 2014-09-19.
  25. Petersen, Melody (2014-12-12). "Congress OKs bill banning purchases of Russian-made rocket engines". LA Times. Retrieved 2014-12-14.
  26. National Security Space Launch Report (PDF). RAND Corporation. 2006. p. 29. Retrieved 28 October 2014.
  27. National Security Space Launch Report (PDF). RAND Corporation. 2006. p. xxi. Retrieved 28 October 2014.
  28. Atlas V EELV – Lockheed-Martin Retrieved on 2008-02-08. Globalsecurity.org. Retrieved on 2011-11-19.
  29. 1 2 "HSF Final Report: Seeking a Human Spaceflight Program Worthy of a Great Nation" (PDF). October 2009. p. 64. Archived from the original (PDF) on 2019-02-16. Retrieved 2011-02-07. Review of U.S. Human Spaceflight Plans Committee

Further reading