RP-1

Last updated

About two litres of RP-1 RP-1 .jpg
About two litres of RP-1

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (H2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than H2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

Contents

Usage and history

Apollo 8, Saturn V with 810,700 litres of RP-1 and 1,311,100 liters of LOX in the S-IC first stage Apollo 8 Liftoff.jpg
Apollo 8, Saturn V with 810,700 litres of RP-1 and 1,311,100 liters of LOX in the S-IC first stage

RP-1 is a fuel in the first-stage boosters of the Electron, Soyuz, Zenit, Delta I-III, Atlas, Falcon, Antares, and Tronador II rockets. It also powered the first stages of the Energia, Titan I, Saturn I and IB, and Saturn V. The Indian Space Research Organization (ISRO) is also developing an RP-1 fueled engine for its future rockets. [2]

Development

During and immediately after World War II, alcohols (primarily ethanol, occasionally methanol) were commonly used as fuels for large liquid-fueled rockets. Their high heat of vaporization kept regeneratively-cooled engines from melting, especially considering that alcohols would typically contain several percent water. However, it was recognized that hydrocarbon fuels would increase engine efficiency, due to a slightly higher density, the lack of an oxygen atom in the fuel molecule, and negligible water content. Regardless of which hydrocarbon was chosen, it would also have to replace alcohol as a coolant.

Many early rockets burned kerosene, but as burn times, combustion efficiencies, and combustion-chamber pressures increased, engine masses decreased, which led to unmanageable engine temperatures. Raw kerosene used as coolant tends to dissociate and polymerize. Lightweight products in the form of gas bubbles cause cavitation, and heavy ones in the form of wax deposits block narrow cooling passages in the engine. The resulting coolant starvation raises temperatures further, and causes more polymerization which accelerates breakdown. The cycle rapidly escalates (i.e., thermal runaway) until an engine wall rupture or other mechanical failure occurs, and it persists even when the entire coolant flow consists of kerosene. In the mid-1950s rocket designers turned to the chemists to formulate a heat-resistant hydrocarbon, with the result being RP-1.

During the 1950s, LOX (liquid oxygen) became the preferred oxidizer to use with RP-1, [3] though other oxidizers have also been employed.

Fractions and formulation

First, sulfur and sulfur compounds attack metals at high temperatures, and even very small amounts of sulfur assist polymerization. Therefore, sulfur and sulfur compounds are kept to a minimum.

Unsaturated compounds (alkenes, alkynes, and aromatics) are also held to low levels, as they tend to polymerize at high temperatures and long periods of storage. At the time, it was thought that kerosene-fueled missiles might remain in storage for years awaiting activation. This function was later transferred to solid-fuel rockets, though the high-temperature benefits of saturated hydrocarbons remained. Because of the low levels of alkenes and aromatics, RP-1 is less toxic than various jet and diesel fuels, and far less toxic than gasoline.

The more desirable isomers were selected or synthesized, with linear alkanes being reduced in number in favor of greater numbers of cyclic and highly branched alkanes. Just as cyclic and branched molecules improve octane rating in petrol, they also significantly increase thermal stability at high temperatures. The most desirable isomers are polycyclics such as ladderanes.

In contrast, the main applications of kerosene (aviation, heating, and lighting), are much less concerned with thermal breakdown and therefore do not require stringent optimisation of their isomers.

In production, these grades are processed tightly to remove impurities and side fractions. Ashes were feared likely to block fuel lines and engine passages, and wear away valves and turbopump bearings, as these are lubricated by the fuel. Slightly too-heavy or too-light fractions affected lubrication abilities and were likely to separate during storage and under load. The remaining hydrocarbons are at or near C12 mass. Because of the lack of light hydrocarbons, RP-1 has a high flash point and is less of a fire hazard than petrol.

All told, the final product is much more expensive than common kerosene. Any petroleum can produce RP-1 with enough refining, though real-world rocket-grade kerosene is sourced from a small number of oil fields with high-quality base stock, or it can be artificially synthesized. This, coupled with the relatively small demand in a niche market compared to other petroleum users, drives RP-1's high price. Military specifications of RP-1 are covered in MIL-R-25576, [4] and the chemical and physical properties of RP-1 are described in NISTIR 6646. [5]

In Russia and other former Soviet countries, the two main rocket kerosene formulations are T-1 and RG-1. Densities are slightly higher, 0.82 to 0.85  g/mL , compared to RP-1 at 0.81 g/mL. For a short period,[ when? ] the Soviets achieved even higher densities by super-chilling the kerosene in the rocket's fuel tanks, but this partially defeated the purpose of using kerosene over other super-chilled fuels.[ clarification needed ] In the case of the Soyuz and R-7, the temperature penalty was minor. Facilities were already in place to manage the vehicle's cryogenic liquid oxygen and liquid nitrogen, both of which are far colder than the kerosene. The launcher's central kerosene tank is surrounded on four sides and the top by liquid-oxygen tanks; the liquid-nitrogen tank is nearby at the bottom. The kerosene tanks of the four boosters are relatively small and compact, and also between a liquid-oxygen and a liquid-nitrogen tank. Thus, once the kerosene was chilled initially, it could remain so for the brief time needed to finish launch preparations. The latest version of Falcon 9, Falcon 9 Full Thrust, also has the capability of sub-cooling the RP-1 fuel to −7  °C , giving a 2.5%–4% density increase.

Comparison with other fuels

LOX/kerosene
Isp at sea level [4] [6] 220–301.5  s
Isp in vacuum [4] [6] 292–340 s
Oxidizer-to-fuel ratio2.56
Density (g/mL)0.81–1.02
Heat capacity ratio 1.24
Temperature of combustion3,670  K

Chemically, a hydrocarbon propellant is less efficient than hydrogen fuel because hydrogen releases more energy per unit mass during combustion, enabling a higher exhaust velocity. This is, in part, a result of the high mass of carbon atoms relative to hydrogen atoms. Hydrocarbon engines are also typically run fuel-rich, which produces some CO instead of CO2 as a consequence of incomplete combustion, although this is not unique to hydrocarbon engines, as hydrogen engines are also typically run fuel-rich for the best overall performance. Some Russian engines run their turbopump preburners oxygen-rich, but the main combustion chamber is still run fuel-rich. All told, kerosene engines generate a Isp in the range of 270 to 360  s , while hydrogen engines achieve 370 to 465 s.

During engine shutdown, fuel flow goes to zero rapidly, while the engine is still quite hot. Residual and trapped fuel can polymerize or even carbonize at hot spots or in hot components. Even without hot spots, heavy fuels can create a petroleum residue, as can be seen in gasoline, diesel, or jet fuel tanks that have been in service for years. Rocket engines have cycle lifetimes measured in minutes or even seconds, preventing truly heavy deposits. However, rockets are much more sensitive to a deposit, as described above. Thus, kerosene systems generally entail more teardowns and overhauls, creating operations and labor expenses. This is a problem for expendable engines, as well as reusable ones, because engines must be ground-fired some number of times before launch. Even cold-flow tests, in which the propellants are not ignited, can leave residues.

On the upside, below a chamber pressure of about 1,000 psi (7 MPa), kerosene can produce sooty deposits on the inside of the nozzle and chamber liner. This acts as a significant insulation layer and can reduce the heat flow into the wall by roughly a factor of two. Most modern hydrocarbon engines, however, run above this pressure, therefore this is not a significant effect for most engines.

Recent heavy-hydrocarbon engines have modified components and new operating cycles, in attempts to better manage leftover fuel, achieve a more-gradual cooldown, or both. This still leaves the problem of non-dissociated petroleum residue. Other new engines have tried to bypass the problem entirely, by switching to light hydrocarbons such as methane or propane gas. Both are volatiles, so engine residues simply evaporate. If necessary, solvents or other purgatives can be run through the engine to finish dispersion. The short-chain carbon backbone of propane (a C3 molecule) is very difficult to break; methane, with a single carbon atom (C1), is technically not a chain at all. The breakdown products of both molecules are also gases, with fewer problems due to phase separation, and much less likelihood of polymerization and deposition. However, methane (and to a lesser extent propane) reintroduces handling inconveniences that prompted kerosenes in the first place.

The low vapor pressure of kerosenes gives safety for ground crews. However, in flight the kerosene tank needs a separate pressurization system to replace fuel volume as it drains. Generally, this is a separate tank of liquid or high-pressure inert gas, such as nitrogen or helium. This creates extra cost and weight. Cryogenic or volatile propellants generally do not need a separate pressurant; instead, some propellant is expanded (often with engine heat) into low-density gas and routed back to its tank. A few highly volatile propellant designs do not even need the gas loop; some of the liquid automatically vaporizes to fill its own container. Some rockets use gas from a gas generator to pressurize the fuel tank; usually, this is exhaust from a turbopump. Although this saves the weight of a separate gas system, the loop now has to handle a hot, reactive gas instead of a cool, inert one.

Regardless of chemical constraints, RP-1 has supply constraints due to the very small size of the launch-vehicle industry versus other consumers of petroleum. While the material price of such a highly refined hydrocarbon is still less than many other rocket propellants, the number of RP-1 suppliers is limited. A few engines have attempted to use more standard, widely distributed petroleum products such as jet fuel or even diesel (for example, ABL Space Systems' E2 engine can run on either RP-1 or Jet-A). By using alternate or supplemental engine cooling methods, some engines can tolerate the non-optimal formulations.

Any hydrocarbon-based fuel produces more air pollution when burned than hydrogen alone. Hydrocarbon combustion produces carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbon (HC) emissions, while hydrogen (H2) reacts with oxygen (O2) to produce only water (H2O), with some unreacted H2 also released. Both hydrocarbon-based fuels and hydrogen fuel will create oxides of nitrogen (NOx) pollutants, because rocket exhaust temperatures above 1,600 °C (2,900 °F) will thermally combine some of the nitrogen (N2) and oxygen (O2) already present in the atmosphere, to create oxides of nitrogen.

RP-1-like fuels

Robert H. Goddard's initial rockets used gasoline.

While the RP-1 specification was being developed, Rocketdyne was experimenting with diethyl cyclohexane. While superior to RP-1, it was never adopted for use – its formulation was not finished before development of Atlas and Titan I (designed around RP-1) leading to RP-1 becoming the standard hydrocarbon rocket fuel. [7]

Soviet formulations are discussed above. In addition, the Soviets briefly used syntin (Russian: синтин), a higher-energy formulation, used in upper stages. Syntin is 1-methyl-1,2-dicyclopropyl cyclopropane (C
10
H
16
). Russia is also working to switch the Soyuz-2 from RP-1 to "naftil" [8] or "naphthyl". [9] [10]

After the RP-1 standard, RP-2 was developed. The primary difference is an even lower sulfur content. However, as most users accept RP-1, there was little incentive to produce and stock a second, even rarer and more expensive formulation.

The OTRAG group launched test vehicles using more common blends. In at least one instance, a rocket was propelled by diesel fuel. However, no OTRAG rocket came even close to orbit.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

Kerosene, or paraffin, is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from Greek: κηρός (kērós) meaning "wax", and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a generic trademark. It is sometimes spelled kerosine in scientific and industrial usage.

<span class="mw-page-title-main">Hybrid-propellant rocket</span> Rocket engine that uses both liquid / gaseous and solid fuel

A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s.

<span class="mw-page-title-main">Liquid hydrogen</span> Liquid state of the element hydrogen

Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.

<span class="mw-page-title-main">Hypergolic propellant</span> Type of rocket engine fuel

A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Liquid oxygen</span> One of the physical forms of elemental oxygen

Liquid oxygen, sometimes abbreviated as LOX or LOXygen, is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an application which has continued to the present.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

<span class="mw-page-title-main">Liquid fuel</span> Liquids that can be used to create energy

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel, ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.

Cryogenic fuels are fuels that require storage at extremely low temperatures in order to maintain them in a liquid state. These fuels are used in machinery that operates in space where ordinary fuel cannot be used, due to the very low temperatures often encountered in space, and the absence of an environment that supports combustion. Cryogenic fuels most often constitute liquefied gases such as liquid hydrogen.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

<span class="mw-page-title-main">Staged combustion cycle</span> Rocket engine operation method

The staged combustion cycle is a power cycle of a bipropellant rocket engine. In the staged combustion cycle, propellant flows through multiple combustion chambers, and is thus combusted in stages. The main advantage relative to other rocket engine power cycles is high fuel efficiency, measured through specific impulse, while its main disadvantage is engineering complexity.

A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

<span class="mw-page-title-main">Industrial gas</span> Gaseous materials produced for use in industry

Industrial gases are the gaseous materials that are manufactured for use in industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders. The industry producing these gases is also known as industrial gas, which is seen as also encompassing the supply of equipment and technology to produce and use the gases. Their production is a part of the wider chemical Industry.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

The RD-701 is a liquid-fuel rocket engine developed by Energomash, Russia. It was briefly proposed to propel the reusable MAKS space plane, but the project was cancelled shortly before the end of USSR. The RD-701 is a tripropellant engine that uses a staged combustion cycle with afterburning of oxidizer-rich hot turbine gas. The RD-701 has two modes. Mode 1 uses three components: LOX as an oxidizer and a fuel mixture of RP-1 / LH2 which is used in the lower atmosphere. Mode 2 also uses LOX, with LH2 as fuel in vacuum where atmospheric influence is negligible.

<span class="mw-page-title-main">Aerojet LR87</span> American rocket engine family used on Titan missile first stages

The LR87 was an American liquid-propellant rocket engine used on the first stages of Titan intercontinental ballistic missiles and launch vehicles. Composed of twin motors with separate combustion chambers and turbopump machinery, it is considered a single unit and was never flown as a single combustion chamber engine or designed for this. The LR87 first flew in 1959.

Fastrac was a turbo pump-fed, liquid rocket engine. The engine was designed by NASA as part of the low cost X-34 Reusable Launch Vehicle (RLV) and as part of the Low Cost Booster Technology project. This engine was later known as the MC-1 engine when it was merged into the X-34 project.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

References

  1. Bilstein, Roger E. (1996) [1980]. "Appendix A—Schematic of Saturn V". Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles. The NASA History Series. NASA. p. 405. ISBN   0-16-048909-1. Archived from the original on November 1, 2008. Digitized copies are available from the Internet Archive: 1996 edition; first edition.
  2. "ISRO Annual Report 2013-14". isro.org. October 18, 2015. Archived from the original on October 18, 2015. Retrieved June 2, 2022.
  3. Sutton, George Paul (2006). History of Liquid Propellant Rocket Engines. American Institute of Aeronautics and Astronautics. p. 42. ISBN   9781563476495.
  4. 1 2 3 "Basics of Space Flight: Rocket Propellants". Braeunig.us. Retrieved December 11, 2012.
  5. "Thermophysical Properties Measurements and Models for Rocket Propellant RP-1: Phase I (NISTIR 6646)" (PDF).
  6. 1 2 "RD-870". Yuzhnoe Design Office. Archived from the original on February 25, 2022.
  7. Clark, John D. (1972). Ignition! An informal history of liquid rocket propellants (PDF). New Brunswick, N.J.: Rutgers University Press. p. 105. ISBN   0-8135-0725-1. OCLC   281664.
  8. "Vostochny launches on schedule for 2017". Russian Space Web. Retrieved February 5, 2018.
  9. "When will Russia's 1st carrier rocket firing naphthyl blast off?". Russia Now. October 11, 2016. Retrieved January 29, 2018.
  10. "Russia completes engine tests of Soyuz rocket's second stage using new fuel". Russian Aviation. February 22, 2019.