Transtage

Last updated
Transtage
Transtage rocket stage.jpg
A Transtage
Manufacturer Martin Marietta
Country of originUnited States
Used on Titan III
General characteristics
Height4.57 meters (15.0 ft)
Diameter3.05 meters (10.0 ft)
Gross mass12,247 kilograms (27,000 lb)
Engine details
Powered by2 AJ10-138
Maximum thrust8,000 lbf (36 kN) each [1]
Specific impulse 311 seconds (3.05 km/s)
Burn time440 seconds
Propellant Aerozine 50 / N2O4

Transtage, given the United States Air Force designation SSB-10A, was an American upper stage used on Titan III rockets, developed by Martin Marietta and Aerojet.

Contents

History

Artist's conception of a Titan III Transtage burn Titan III Transtage burn.jpg
Artist's conception of a Titan III Transtage burn

Transtage was developed in anticipation of a requirement to launch military payloads to geostationary orbit; a contract for development of the stage was issued on 20 August 1962. [2] Transtage used a pressure-fed two-chamber configuration, using Aerozine 50 fuel and nitrogen tetroxide as oxidizer; the thrust chambers were gimbaled for steering and each produced 8,000 lbf (36 kN) of thrust. [3] The design specification required up to three restarts during the first six hours of a mission. [4]

Forty-seven Titan III launches are known to have used Transtage upper stages; [5] of those, three are known to have suffered launch failures. [6] The first launch, boosted by a Titan IIIA, occurred on 1 September 1964; [7] the Transtage failed to pressurize, resulting in premature engine cutoff, and a failure to reach orbit. [6] The second launch, on 10 December, was successful, and all ensuing launches used the Titan IIIC launch vehicle. The last launch of a Transtage was on 4 September 1989, boosted by a Titan 34D rocket. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Titan (rocket family)</span> Family of launch vehicles used in U.S. Air Force and space programs (1959–2005)

Titan was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contributed the majority of the 368 Titan launches, including all the Project Gemini crewed flights of the mid-1960s. Titan vehicles were also used to lift US military payloads as well as civilian agency reconnaissance satellites and to send interplanetary scientific probes throughout the Solar System.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages that has been in use since 1962. It is currently produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V has been developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

<span class="mw-page-title-main">RM-81 Agena</span> American rocket upper stage and satellite bus

The RM-81 Agena was an American rocket upper stage and satellite bus which was developed by Lockheed Corporation initially for the canceled WS-117L reconnaissance satellite program. Following the division of WS-117L into SAMOS and Corona for image intelligence, and MIDAS for early warning, the Agena was later used as an upper stage, and an integrated component, for several programs, including Corona reconnaissance satellites and the Agena Target Vehicle used to demonstrate rendezvous and docking during Project Gemini. It was used as an upper stage on the Atlas, Thor, Thorad and Titan IIIB rockets, and considered for others including the Space Shuttle and Atlas V. A total of 365 Agena rockets were launched between February 28, 1959 and February 1987. Only 33 Agenas carried NASA payloads and the vast majority were for DoD programs.

<span class="mw-page-title-main">Boeing X-20 Dyna-Soar</span> Research spaceplane by Boeing

The Boeing X-20 Dyna-Soar was a United States Air Force (USAF) program to develop a spaceplane that could be used for a variety of military missions, including aerial reconnaissance, bombing, space rescue, satellite maintenance, and as a space interceptor to sabotage enemy satellites. The program ran from October 24, 1957, to December 10, 1963, cost US$660 million, and was cancelled just after spacecraft construction had begun.

<span class="mw-page-title-main">Zenit (rocket family)</span> Soviet (now Ukrainian) RP-1/LOX fueled rocket, for satellite launch

Zenit was a family of space launch vehicles designed by the Yuzhnoye Design Bureau in Dnipro, Ukraine, which was then part of the Soviet Union. Zenit was originally built in the 1980s for two purposes: as a liquid rocket booster for the Energia rocket and, equipped with a second stage, as a stand-alone middle-weight launcher with a payload greater than the 7 tonnes of the Soyuz but smaller than the 20 tonnes payload of the Proton. The last rocket family developed in the USSR, the Zenit was intended as an eventual replacement for the dated Soyuz and Proton families, and it would employ propellants which were safer and less toxic than the Proton's nitrogen tetroxide/UDMH mix. Zenit was planned to take over crewed spaceship launches from Soyuz, but these plans were abandoned after the dissolution of the Soviet Union in 1991.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Titan IIIB</span>

Titan IIIB was the collective name for a number of derivatives of the Titan II ICBM and Titan III launch vehicle, modified by the addition of an Agena upper stage. It consisted of four separate rockets. The Titan 23B was a basic Titan II with an Agena upper stage, and the Titan 24B was the same concept, but using the slightly enlarged Titan IIIM rocket as the base. The Titan 33B was a Titan 23B with the Agena enclosed in an enlarged fairing, in order to allow larger payloads to be launched. The final member of the Titan IIIB family was the Titan 34B which was a Titan 24B with the larger fairing used on the Titan 33B.

<span class="mw-page-title-main">Titan IIIC</span> Expendable launch system used by the US Air Force

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.

<span class="mw-page-title-main">Atlas II</span> American rocket

Atlas II was a member of the Atlas family of launch vehicles, which evolved from the successful Atlas missile program of the 1950s. The Atlas II was a direct evolution of the Atlas I, featuring longer first stage tanks, higher-performing engines, and the option for strap-on solid rocket boosters. It was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. Sixty-three launches of the Atlas II, IIA and IIAS models were carried out between 1991 and 2004; all sixty-three launches were successes, making the Atlas II a highly reliable space launch system. The Atlas line was continued by the Atlas III, used between 2000 and 2005, and the Atlas V which is still in use.

<span class="mw-page-title-main">Athena (rocket family)</span> Lockheed Martin expendable launch system

Athena was a 1990s Lockheed Martin expendable launch system which underwent several name changes in its lifetime.

<span class="mw-page-title-main">Inertial Upper Stage</span> Space launch system

The Inertial Upper Stage (IUS), originally designated the Interim Upper Stage, was a two-stage, solid-fueled space launch system developed by Boeing for the United States Air Force beginning in 1976 for raising payloads from low Earth orbit to higher orbits or interplanetary trajectories following launch aboard a Titan 34D or Titan IV rocket as its upper stage, or from the payload bay of the Space Shuttle as a space tug.

<span class="mw-page-title-main">Cape Canaveral Space Launch Complex 40</span> Rocket launch site in Florida, USA

Space Launch Complex 40 (SLC-40), sometimes pronounced Slick Forty and previously Launch Complex 40 (LC-40) is a launch pad for rockets located at the north end of Cape Canaveral Space Force Station, Florida.

<span class="mw-page-title-main">AJ10</span> Hypergolic rocket engine manufactured by Aerojet

The AJ10 is a hypergolic rocket engine manufactured by Aerojet Rocketdyne. It has been used to propel the upper stages of several launch vehicles, including the Delta II and Titan III. Variants were and are used as the service propulsion engine for the Apollo command and service module, in the Space Shuttle Orbital Maneuvering System, and on the European Service Module – part of NASA's Orion spacecraft.

<span class="mw-page-title-main">Titan 34D</span>

The Titan 34D was a United States expendable launch vehicle used to launch a number of satellites for military applications.

<span class="mw-page-title-main">Titan IIIA</span> American expendable launch system

The Titan IIIA or Titan 3A was an American expendable launch system, launched four times in 1964 and 1965, to test the Transtage upper stage which was intended for use on the larger Titan IIIC. The Transtage was mounted atop two core stages derived from the Titan II. The Titan IIIA was also used as the core of the Titan IIIC.

<span class="mw-page-title-main">Titan IIIE</span> Expendable launch system used by NASA

The Titan IIIE or Titan 3E, also known as the Titan III-Centaur, was an American expendable launch system. Launched seven times between 1974 and 1977, it enabled several high-profile NASA missions, including the Voyager and Viking planetary probes and the joint West Germany-U.S. Helios spacecraft. All seven launches were conducted from Cape Canaveral Air Force Station Launch Complex 41 in Cape Canaveral, Florida.

<span class="mw-page-title-main">OV2-1</span> US Air Force satellite

Orbiting Vehicle 2-1, the first satellite of the second series of the United States Air Force's Orbiting Vehicle program, was an American life science research satellite. Its purpose was to determine the extent of the threat posed to astronauts by the Van Allen radiation belts. Launched 15 October 1965, the mission resulted in failure when the upper stage of OV2-1's Titan IIIC booster broke up.

<span class="mw-page-title-main">OV2-3</span> US Air Force satellite

Orbiting Vehicle 2-3, the second satellite of the second series of the United States Air Force's Orbiting Vehicle program, was an American solar astronomy, geomagnetic and particle science research satellite. Launched 22 December 1965 along with three other satellites, the mission resulted in failure when the spacecraft failed to separate from the upper stage of its Titan IIIC.

<span class="mw-page-title-main">Integrated Apogee Boost Stage</span> American rocket stage

The Integrated Apogee Boost Stage was an American rocket stage used for the launch of Defense Satellite Communications System III satellites to geostationary orbit when using a launch vehicle without an upper stage capable of delivering them there directly. Earlier DSCS III satellites had launched on the Titan 34D and Space Shuttle Atlantis, which were capable of delivering them directly to geostationary orbit - as such, the satellites were not capable of moving from geostationary transfer orbit to geostationary orbit themselves. Because of this, launch of these satellites on the Atlas II and Delta IV families required an apogee kick stage - the IABS - to be added to the satellite. The IABS was developed by GE Astro Space, who also manufactured the DSCS III satellites it was designed for.

<span class="mw-page-title-main">Solid Rocket Motor Upgrade</span> American solid propellant rocket motor

The Solid Rocket Motor Upgrade (SRMU) was a solid rocket motor that was used as a booster on the Titan IVB launch vehicle. Developed by Hercules, it was intended to be a high-performance, low-cost upgrade to the UA1207 boosters previously used on Titan IV. Wound from carbon-fibre-reinforced polymer and burning a hydroxyl-terminated polybutadiene-bound ammonium perchlorate composite propellant, it was an ambitious upgrade building on Hercules' experience developing a filament-wound case for the Space Shuttle SRB. Originally intended to fly in 1990, it instead first flew in 1997 due to a protracted development and lack of demand. The SRMU performed successfully on all of its flights.

References

  1. Wade, Mark. "AJ10-138". Encyclopedia Astronautica. Archived from the original on December 28, 2016. Retrieved 2019-07-24.
  2. Foradori, Paolo; Giampiero Giacomello; Alessandro Pascolini (2017). Arms Control and Disarmament: 50 Years of Experience in Nuclear Education. London: Palgrage Macmillan. pp. 56–57. ISBN   978-3-319-62258-3.
  3. "Titan Transtage". 2016-12-28. Archived from the original on 2016-12-28. Retrieved 2024-04-26.
  4. Hunley, J.D. (2007). The Development of Propulsion Technology for U.S. Space-Launch Vehicles, 1926-1991. College Station, TX: Texas A&M University Press. p. 168. ISBN   978-1-58544-588-2.
  5. "Transtage". space.skyrocket.de. Retrieved 2024-04-26.
  6. 1 2 3 Heyman, Jos (17 March 2003). "Martin Marietta SSB-10 Transtage". Directory of U.S. Military Rockets and Missilesm Appendix 3: Space Vehicles. Designation-Systems. Retrieved 2017-12-17.
  7. "Transtage 1, 2, 5". www.astronautix.com. Retrieved 2024-04-26.