UA120

Last updated
Launch of a Titan 34D with two UA1206 boosters DF-SC-83-03173 cropped.jpeg
Launch of a Titan 34D with two UA1206 boosters

UA120 was a family of American solid rocket boosters, manufactured by the Chemical Systems Division of United Aircraft (later United Technologies Corporation). Several variants existed, with a varying number of segments.

Contents

Design

Schematic of the UA120 booster UA120schematic.png
Schematic of the UA120 booster

All versions of UA120 shared a common design, with the only significant differentiating factor being the length of the motor. It was a segmented design, with between five and seven motor segments possible. A solid propellant used was a ammonium perchlorate composite propellant with polybutadiene acrylonitrile (PBAN) binder. [1] The stage had an external diameter of 120 inches. [2] Attitude control in flight was provided by means of a liquid injection thrust vector control (LITVC) system, with an external nacelle containing nitrogen tetroxide attached to the side of each booster. [2] Solid fueled separation rockets, used to jettison the spent boosters, were affixed at the top and bottom of the stage. [2] Thrust-termination capability, necessary for crewed rockets such as the Space Shuttle or Manned Orbiting Laboratory, was to be provided by two pyrotechnically triggered ports on the forward closure, which when opened would allow for the non-propulsive venting of exhaust gasses. [3] The forward end of the stage contained an aerodynamic nose cone, an ignitor, separation rockets, and the forward attachment ring. The aft end contained additional separation rockets, the nozzle, and a heat shield. [2]

Variants

The overall design of each variant was very similar, the main difference being the number of segments used. This is indicated by the number at the end of each designation.

UA1205

UA1205 was used as a strap-on booster on the Titan IIIC, Titan IIID, and Titan IIIE rockets, and was proposed for use on several derivatives of the Saturn rocket family. [1] [2]

UA1206

The UA1206 was used as a strap-on booster on Titan 34D and Commercial Titan III. [4]

UA1207

UA1207 was used on Titan IV-A. It was proposed for several other variants of Titan III and IV, as well as derivatives of the Saturn rocket family and the Space Shuttle. [2] [3] [5]

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to the ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Titan (rocket family)</span> Family of launch vehicles used in U.S. Air Force and space programs (1959–2005)

Titan was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contributed the majority of the 368 Titan launches, including all the Project Gemini crewed flights of the mid-1960s. Titan vehicles were also used to lift US military payloads as well as civilian agency reconnaissance satellites and to send interplanetary scientific probes throughout the Solar System.

<span class="mw-page-title-main">Soyuz (rocket family)</span> Russian and Soviet rocket family

Soyuz is a family of expendable Russian and Soviet carrier rockets developed by OKB-1 and manufactured by Progress Rocket Space Centre in Samara, Russia. The Soyuz is the rocket with the most launches in the history of spaceflight.

<span class="mw-page-title-main">Space Shuttle Solid Rocket Booster</span> Solid propellant rocket used to launch the Space Shuttle orbiter

The Space Shuttle Solid Rocket Booster (SRB) was the first solid-propellant rocket to be used for primary propulsion on a vehicle used for human spaceflight. A pair of these provided 85% of the Space Shuttle's thrust at liftoff and for the first two minutes of ascent. After burnout, they were jettisoned and parachuted into the Atlantic Ocean where they were recovered, examined, refurbished, and reused.

<span class="mw-page-title-main">Solid rocket booster</span> Solid propellant motor used to augment the thrust of a rocket

A solid rocket booster (SRB) is a large solid propellant motor used to provide thrust in spacecraft launches from initial launch through the first ascent. Many launch vehicles, including the Atlas V, SLS and Space Shuttle, have used SRBs to give launch vehicles much of the thrust required to place the vehicle into orbit. The Space Shuttle used two Space Shuttle SRBs, which were the largest solid propellant motors ever built and the first designed for recovery and reuse. The propellant for each solid rocket motor on the Space Shuttle weighed approximately 500,000 kilograms.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Titan IIIC</span> Expendable launch system used by the US Air Force

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar, though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight (ATS-6) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID, was launched only from Vandenberg AFB.

<span class="mw-page-title-main">Atlas II</span> American rocket

Atlas II was a member of the Atlas family of launch vehicles, which evolved from the successful Atlas missile program of the 1950s. The Atlas II was a direct evolution of the Atlas I, featuring longer first-stage tanks, higher-performing engines, and the option for strap-on solid rocket boosters. It was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. Sixty-three launches of the Atlas II, IIA and IIAS models were carried out between 1991 and 2004; all sixty-three launches were successes, making the Atlas II a highly reliable space launch system. The Atlas line was continued by the Atlas III, used between 2000 and 2005, and the Atlas V, which is still in use as of 2024.

A liquid rocket booster (LRB) uses liquid fuel and oxidizer to give a liquid-propellant or hybrid rocket an extra boost at take-off, and/or increase the total payload that can be carried. It is attached to the side of a rocket. Unlike solid rocket boosters, LRBs can be throttled down if the engines are designed to allow it, and can be shut down safely in an emergency for additional escape options in human spaceflight.

<span class="mw-page-title-main">Ares I</span> Canceled NASA rocket key to the Constellation program

Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the "Crew Launch Vehicle" (CLV).

<span class="mw-page-title-main">Booster separation motor</span>

The booster separation motors or BSMs on the Space Shuttle were relatively small rocket motors that separated the reusable solid rocket boosters (SRB) from the orbiter after SRB burnout. Eight booster separation motors were attached to each of the shuttle's two reusable solid rocket boosters, four on the forward frustum and four on the aft skirt.

<span class="mw-page-title-main">Inertial Upper Stage</span> Space launch system

The Inertial Upper Stage (IUS), originally designated the Interim Upper Stage, was a two-stage, solid-fueled space launch system developed by Boeing for the United States Air Force beginning in 1976 for raising payloads from low Earth orbit to higher orbits or interplanetary trajectories following launch aboard a Titan 34D or Titan IV rocket as its upper stage, or from the payload bay of the Space Shuttle as a space tug.

<span class="mw-page-title-main">Saturn II</span> Proposed NASA heavy-lift launch vehicle

The Saturn II was a series of American expendable launch vehicles, studied by North American Aviation under a NASA contract in 1966, derived from the Saturn V rocket used for the Apollo lunar program. The intent of the study was to eliminate production of the Saturn IB, and create a lower-cost heavy launch vehicle based on Saturn V hardware. North American studied three versions with the S-IC first stage removed: the INT-17, a two-stage vehicle with a low Earth orbit payload capability of 47,000 pounds (21,000 kg); the INT-18, which added Titan UA1204 or UA1207 strap-on solid rocket boosters, with payloads ranging from 47,000 pounds (21,000 kg) to 146,400 pounds (66,400 kg); and the INT-19, using solid boosters derived from the Minuteman missile first stage.

<span class="mw-page-title-main">Saturn MLV</span> Proposed successor to the Saturn V rocket

The Saturn MLV was a proposed concept family of rockets, intended as a follow-on to the Saturn V. MLV stands for "Modified Launch Vehicle".

<span class="mw-page-title-main">Star 48</span> American solid rocket motor developed by Thiokol

The Star 48 is the largest of a family of solid rocket motors used by many space propulsion and launch vehicle stages, almost exclusively as an upper stage. It was developed primarily by Thiokol Propulsion and after several mergers, is manufactured by Northrop Grumman’s Space Systems division. A Star 48B stage is also one of the few man-made items sent on escape trajectories out of the Solar System, although it is derelict since its use. The Star 48B variant was the PAM-D upper stage used on the retired Delta II rocket.

<span class="mw-page-title-main">Castor (rocket stage)</span> Solid-fuel orbital vehicle component

Castor is a family of solid-fuel rocket stages and boosters built by Thiokol and used on a variety of launch vehicles. They were initially developed as the second-stage motor of the Scout rocket. The design was based on the MGM-29 Sergeant, a surface-to-surface missile developed for the United States Army at the Jet Propulsion Laboratory.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

The Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">Studied Space Shuttle designs</span> Launch vehicle study

During the lifetime of the Space Shuttle, Rockwell International and many other organizations studied various Space Shuttle designs. These involved different ways of increasing cargo and crew capacity, as well as investigating further reusability. A large focus of these designs were related to developing new shuttle boosters and improvements to the central tank, but also looked to expand NASA's ability to launch deep space missions and build modular space stations. Many of these concepts and studies would shape the concepts and programs of the 2000s such as the Constellation, Orbital Space Plane Program, and Artemis program.

<span class="mw-page-title-main">Solid Rocket Motor Upgrade</span> American solid propellant rocket motor

The Solid Rocket Motor Upgrade (SRMU) was a solid rocket motor that was used as a booster on the Titan IVB launch vehicle. Developed by Hercules, it was intended to be a high-performance, low-cost upgrade to the UA1207 boosters previously used on Titan IV. Wound from carbon-fibre-reinforced polymer and burning a hydroxyl-terminated polybutadiene-bound ammonium perchlorate composite propellant, it was an ambitious upgrade building on Hercules' experience developing a filament-wound case for the Space Shuttle SRB. Originally intended to fly in 1990, it instead first flew in 1997 due to a protracted development and lack of demand. The SRMU performed successfully on all of its flights.

<span class="mw-page-title-main">Aerojet 260</span> Experimental solid rocket motor

The Aerojet 260 was an experimental solid rocket motor constructed and tested in the mid-1960s by Aerojet for NASA.

References

  1. 1 2 "UA1205". Astronautix. Archived from the original on March 1, 2002. Retrieved 26 February 2016.
  2. 1 2 3 4 5 6 "A STUDY OF PERFORMANCE AND COST IMPROVEMENT POTENTIAL OF THE 120-IN.- (3.05 M) DIAMETER SOLID ROCKET MOTOR" (PDF). United Aircraft Corporation. December 1971. Retrieved 26 February 2016.
  3. 1 2 "Study of Solid Rocket Motors for a Space Shuttle Booster" (PDF). United Technology Center. 15 March 1972. Retrieved 26 February 2016.
  4. "Titan UA1206". Astronautix. Archived from the original on February 8, 2002. Retrieved 26 February 2016.
  5. "UA1207". Astronautix. Archived from the original on 4 March 2016. Retrieved 26 February 2016.