Viking (rocket engine)

Last updated
Viking
Viking 5C rocketengine.jpg
Viking 5C rocket engine
Country of originFrance
First flight1979
Last flight2003
DesignerSociété Européenne de Propulsion (SEP)
PredecessorNone
Successor Vikas
Vulcain
StatusRetired
Liquid-fuel engine
Propellant Dinitrogen tetroxide / UDMH or UH 25
Configuration
ChamberFilm-cooled, ablative throat insert
Nozzle ratio10 (Viking 5C)
30.8 (Viking 4B) [1]
Performance
Thrust, vacuum690–805 kN (155,000–181,000 lbf)
Thrust, sea-level611–678 kN (137,000–152,000 lbf)
Thrust-to-weight ratio 80–99
Chamber pressure 5.5 MPa (800 psi)
Specific impulse, vacuum2.76–2.95 km/s (281–301 s)
Specific impulse, sea-level2.43–2.79 km/s (248–284 s)
RestartsUnlimited
Gimbal range Fixed, swiveled, and gimbaled versions were made
Dimensions
Length2.87–3.51 m (9.4–11.5 ft)
Diameter0.95–1.7 m (3.1–5.6 ft)
Used in
Ariane 1Ariane 4
References
References [2]

The Viking rocket engines were members of a series of bipropellant engines for the first and second stages of the Ariane 1 through Ariane 4 commercial launch vehicles, using storable, hypergolic propellants: dinitrogen tetroxide and UH 25, a mixture of 75% UDMH and 25% hydrazine [3] (originally UDMH).

Contents

The earliest versions, developed in 1965, had a sea-level thrust of about 190 kN. By 1971, the thrust had improved to 540 kN, with resulting engine named Viking 1 and adopted for the Ariane program. The engine first flown on the Ariane 1 rocket in 1979 was Viking 2, with thrust further improved to 611 kN.

The version used on the Ariane 4 first stage, which used a cluster of four, had 667 kN thrust each. The second stage of Ariane used a single Viking. Over 1000 were built, and achieved a high level of reliability from early in the programme.

The 144 Ariane 1 to 4 launchers used a total of 958 Viking engines. Only two engines led to a failure. The first failure (on second Ariane 1 flight 23 May 1980) was due to a chamber combustion instability. [4] The vehicle had lost an attitude control and broke up. Several injector changes were implemented in the aftermath of the failure, and the fuel was changed from UDMH to UH 25.

The second failure was of human origin: a rag had been left in a water coolant pipe during installation, resulting in a loss of thrust and vehicle breakup due to off-centre thrust during launch on 22 February 1990. [5]

Initially, all the engines were tested before being integrated on a launcher. Beginning in 1998, engineers, confident of the reliability of the engine, authorized the use of untested engines on launchers. One engine per year was tested, randomly taken from the assembly workshops. [6] This confidence is very rare in the world of space engines.

An unusual feature of the Viking engines is their water tank and water pump, used to cool the exhaust gasses of the gas generator. The hot exhaust of the gas generator is cooled by water injection to 620 °C before being used to drive the three coaxial pumps (for water, fuel and oxidizer) and to pressurize the fuel tanks. The water was also used as a hydraulic fluid to actuate the valves. [7]

Technical data

Viking 2Viking 2BViking 4Viking 4BViking 5CViking 6
Height2.87 m2.87 m3.51 m3.51 m2.87 m2.87 m
Diameter0.95 m0.99 m1.70 m1.70 m0.99 m0.99 m
Mass776 kg [8] 776 kg [9] 826 kg826 kg826 kg826 kg
Propellant Dinitrogen tetroxide and UDMH in ratio 1.86:1 Dinitrogen tetroxide and UH 25 in ratio 1.70:1 Dinitrogen tetroxide and UDMH in ratio 1.86:1 Dinitrogen tetroxide and UH 25 in ratio 1.70:1 Dinitrogen tetroxide and UH 25 in ratio 1.70:1 Dinitrogen tetroxide and UH 25 in ratio 1.71:1
Propellant consumption250 kg/sca. 275 kg/sca. 275 kg/s273 kg/s244 kg/sca. 275 kg/s
Performance of the turbine2500 kW, 10,000 rpm2500 kW, 10,000 rpm2500 kW, 10,000 rpm2500 kW, 10,000 rpm2500 kW, 10,000 rpm2500 kW, 10,000 rpm
Vacuum thrust690 kN ?713 kN805 kN [10] 758 kN750 kN
Sea level thrust611 kN643 kN--678 kN ?
UseAriane 1Ariane 2, 3Ariane 1Ariane 2 – 4Ariane 4PAL (Ariane 4 liquid booster)

See also

Related Research Articles

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Chinese, Indians, Mongols and Persians as early as the 13th century.

Specific impulse is a measure of how efficiently a reaction mass engine creates thrust. For engines whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.

<span class="mw-page-title-main">Hypergolic propellant</span> Type of rocket engine fuel

A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

<span class="mw-page-title-main">Expander cycle</span> Rocket engine operation method

The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

Aerozine 50 is a 50:50 mix by weight of hydrazine and unsymmetrical dimethylhydrazine (UDMH), originally developed in the late 1950s by Aerojet General Corporation as a storable, high-energy, hypergolic fuel for the Titan II ICBM rocket engines. Aerozine continues in wide use as a rocket fuel, typically with dinitrogen tetroxide as the oxidizer, with which it is hypergolic. Aerozine 50 is more stable than hydrazine alone, and has a higher density and boiling point than UDMH alone.

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

<span class="mw-page-title-main">Staged combustion cycle</span> Rocket engine operation method

The staged combustion cycle is a power cycle of a bipropellant rocket engine. In the staged combustion cycle, propellant flows through multiple combustion chambers, and is thus combusted in stages. The main advantage relative to other rocket engine power cycles is high fuel efficiency, measured through specific impulse, while its main disadvantage is engineering complexity.

<span class="mw-page-title-main">YF-73</span>

The YF-73 was China's first successful cryogenic liquid hydrogen fuel and liquid oxygen oxidizer gimballed engine. It was used on the Long March 3 H8 third stage, running on the simple gas generator cycle and with a thrust of 44.15 kilonewtons (9,930 lbf). It had four hinge mounted nozzles that gimbaled each on one axis to supply thrust vector control and was restart capable. It used cavitating flow venturis to regulate propellant flows. The gas generator also incorporated dual heat exchangers that heated hydrogen gas, and supplied helium from separate systems to pressurize the hydrogen and oxygen tanks. The engine was relatively underpowered for its task and the start up and restart procedures were unreliable. Thus, it was quickly replaced by the YF-75.

<span class="mw-page-title-main">YF-77</span> Chinese rocket engine

The YF-77 is China's first cryogenic rocket engine developed for booster applications. It burns liquid hydrogen fuel and liquid oxygen oxidizer using a gas generator cycle. A pair of these engines powers the LM-5 core stage. Each engine can independently gimbal in two planes. Although the YF-77 is ignited prior to liftoff, the LM-5's four strap-on boosters provide most of the initial thrust in an arrangement similar to the European Vulcain on the Ariane 5 or the Japanese LE-7 on the H-II.

<span class="mw-page-title-main">Vikas (rocket engine)</span> Indian rocket engine

The Vikas is a family of liquid fuelled rocket engines conceptualized and designed by the Liquid Propulsion Systems Centre in the 1970s. The design was based on the licensed version of the Viking engine with the chemical pressurisation system. The early production Vikas engines used some imported French components which were later replaced by domestically produced equivalents. It is used in the Polar Satellite Launch Vehicle (PSLV), Geosynchronous Satellite Launch Vehicle (GSLV) and LVM3 for space launch use.also used by lsro

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

<span class="mw-page-title-main">Aerojet LR87</span> American rocket engine family used on Titan missile first stages

The LR87 was an American liquid-propellant rocket engine used on the first stages of Titan intercontinental ballistic missiles and launch vehicles. Composed of twin motors with separate combustion chambers and turbopump machinery, it is considered a single unit and was never flown as a single combustion chamber engine or designed for this. The LR87 first flew in 1959.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

The TR-201 or TR201 is a hypergolic pressure-fed rocket engine used to propel the upper stage of the Delta rocket, referred to as Delta-P, from 1972 to 1988. The rocket engine uses Aerozine 50 as fuel, and N
2
O
4
as oxidizer. It was developed in the early 1970s by TRW as a derivative of the lunar module descent engine (LMDE). This engine used a pintle injector first invented by Gerard W. Elverum Jr. and developed by TRW in the late 1950s and received US Patent in 1972. This injector technology and design is also used on SpaceX Merlin engines.

<span class="mw-page-title-main">XLR81</span> American Agena rocket motor (1963–1984)

The Bell Aerosystems Company XLR81 was an American liquid-propellant rocket engine, which was used on the Agena upper stage. It burned UDMH and RFNA fed by a turbopump in a fuel rich gas generator cycle. The turbopump had a single turbine with a gearbox to transmit power to the oxidizer and fuel pumps. The thrust chamber was all-aluminum, and regeneratively cooled by oxidizer flowing through gun-drilled passages in the combustion chamber and throat walls. The nozzle was a titanium radiatively cooled extension. The engine was mounted on a hydraulic actuated gimbal which enabled thrust vectoring to control pitch and yaw. Engine thrust and mixture ratio were controlled by cavitating flow venturis on the gas generator flow circuit. Engine start was achieved by solid propellant start cartridge.

References

  1. George Paul Sutton, "History of Liquid Propellant Rocket Engines", p. 798
  2. News Archive 2009 Viking engine (Archived)
  3. Souchier, A..Drakkar Ariane 1st stage - The concept and its originality , AA(Societe Europeenne de Propulsion, Vernon, Eure, France) International Astronautical Federation, International Astronautical Congress, 27th, Anaheim, Calif., Oct. 10–16, 1976, 4 p.
  4. Guy Collins. "Europe in Space", p. 51
  5. Launch failures: the “Oops!” factor
  6. Qualification Over Ariane’s Lifetime
  7. George Paul Sutton, "History of Liquid Propellant Rocket Engines", p. 799
  8. "Viking 2". Archived from the original on 2015-08-24. Retrieved 2015-08-14.
  9. "Viking 2B". Archived from the original on 2015-08-24. Retrieved 2015-08-17.
  10. Martin J. L. Turner, "Rocket and Spacecraft Propulsion: Principles, Practice and New Developments", p.90