RD-0110R

Last updated
RD-0110R
Country of origin Russia
First flight2013-12-28
Designer KBKhA, [1] Viktor Gorokhov [2]
Manufacturer Voronezh Mechanical Plant [2]
Application1st stage vernier engine
Associated LV Soyuz-2-1v [1]
Predecessor RD-0110 [1]
StatusIn Production
Liquid-fuel engine
Propellant LOX [1] / RG-1 [1]
Cycle Gas Generator [1]
Configuration
Chamber4 [1]
Performance
Thrust, vacuum265.1 kilonewtons (59,600 lbf) [1]
Thrust, sea-level230.5 kilonewtons (51,800 lbf) [1]
Chamber pressure 6.6 megapascals (960 psi) [1]
Specific impulse, vacuum298.4 seconds [1]
Specific impulse, sea-level259.4 seconds [1]
Burn time210s [1]
Dimensions
Length1,910 millimetres (75 in) [1]
Diameter2,675 millimetres (105.3 in) [1]
Dry weight850 kilograms (1,870 lb) [1] (including the support ring)
Used in
Soyuz-2-1v first stage.

The RD-0110R (GRAU Index 14D24) is a rocket engine burning kerosene in liquid oxygen in a gas generator combustion cycle. It has four nozzles that can gimbal up to 45 degrees in a single axis and is used as the vernier thruster on the Soyuz-2-1v first stage. [1] It also has heat exchangers that heat oxygen and helium to pressurize the LO2 and RG-1 tanks of the Soyuz-2.1v first stage, respectively. The oxygen is supplied from the same LO2 tank in liquid form, while the helium is supplied from separate high pressure bottles (known as the T tank). [1]

Contents

The engine's development started in 2010 and it is a heavily modified version of the RD-0110. The main areas of work were shortening the nozzles to optimize them for the atmospheric part of the flight (the RD-0110 is a vacuum optimized engine), propellant piping, heat exchangers and the gimballing system, which was developed by TsSKB Progress. The RD-0110R engine is produced at the Voronezh Mechanical Plant. [2]

See also

Related Research Articles

Rocket engine Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

RP-1 Highly refined form of kerosene used as rocket fuel

RP-1 (alternatively, Rocket Propellant-1 or Refined Petroleum-1) is a highly refined form of kerosene outwardly similar to jet fuel, used as rocket fuel. RP-1 provides a lower specific impulse than liquid hydrogen (LH2), but is cheaper, is stable at room temperature, and presents a lower explosion hazard. RP-1 is far denser than LH2, giving it a higher energy density (though its specific energy is lower). RP-1 also has a fraction of the toxicity and carcinogenic hazards of hydrazine, another room-temperature liquid fuel.

Liquid-propellant rocket Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. It is also possible to use lightweight centrifugal turbopumps to pump the rocket propellant from the tanks into the combustion chamber, which means that the propellants can be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

Cryogenic fuels are fuels that require storage at extremely low temperatures in order to maintain them in a liquid state. These fuels are used in machinery that operates in space where ordinary fuel cannot be used, due to the very low temperatures often encountered in space, and the absence of an environment that supports combustion. Cryogenic fuels most often constitute liquefied gases such as liquid hydrogen.

NK-33 Soviet rocket engine

The NK-33 and NK-43 are rocket engines designed and built in the late 1960s and early 1970s by the Kuznetsov Design Bureau. The NK designation is derived from the initials of chief designer Nikolay Kuznetsov. The NK-33 was among the most powerful LOX/RP-1 rocket engines when it was built, with a high specific impulse and low structural mass. They were intended for the ill-fated Soviet N1F moon rocket, which was an upgraded version of the N1. The NK-33A rocket engine is now used on the first stage of the Soyuz-2-1v launch vehicle. When the supply of the NK-33 engines are exhausted, Russia will supply the new RD-193 rocket engine. It used to be the first stage engines of the Antares 100 rocket series, although those engines are rebranded the AJ-26 and the newer Antares 200 and Antares 200+ rocket series uses the RD-181 for the first stage engines, which is a modified RD-191, but shares some properties like a single combustion chamber unlike the two combustion chambers used in the RD-180 of the Atlas V and the four combustion chambers used in the RD-170 of the Energia and Zenit rocket families, and the RD-107, RD-108, RD-117, and RD-118 rocket engines used on all of the variants of the Soyuz rocket.

The YF-75 is a liquid cryogenic rocket engine burning liquid hydrogen and liquid oxygen in a gas generator cycle. It is China's second generation of cryogenic propellant engine, after the YF-73, which it replaced. It is used in a dual engine mount in the H-18 third stage of the Long March 3A, Long March 3B and Long March 3C launch vehicles. Within the mount, each engine can gimbal individually to enable thrust vectoring control. The engine also heats hydrogen and helium to pressurize the stage tanks and can control the mixture ratio to optimize propellant consumption.

The YF-77 is China's first cryogenic rocket engine developed for booster applications. It burns liquid hydrogen fuel and liquid oxygen oxidizer using a gas generator cycle. A pair of these engines powers the LM-5 core stage. Each engine can independently gimbal in two planes. Although the YF-77 is ignited prior to liftoff, the LM-5's four strap-on boosters provide most of the initial thrust in an arrangement similar to the European Vulcain on the Ariane 5 or the Japanese LE-7 on the H-II.

Chemical Automatics Design Bureau Russian rocket engine manufacturer

Chemical Automatics Design Bureau (CADB), also KB Khimavtomatika, is a Russian design bureau founded by the NKAP in 1941 and led by Semyon Kosberg until his death in 1965. Its origin dates back to a 1940 Moscow carburetor factory, evacuated to Berdsk in 1941, and then relocated to Voronezh city in 1945, where it now operates. Originally designated OKB-296 and tasked to develop fuel equipment for aviation engines, it was redesignated OKB-154 in 1946.

RD-191 Russian rocket engine

The RD-191 is a high-performance single-combustion chamber rocket engine, developed in Russia. It is derived from the RD-180 dual-combustion chamber engine, which itself was derived in turn from the four-chamber RD-170 originally used in the Energia launcher.

RD-0124

The RD-0124 is a rocket engine burning liquid oxygen and kerosene in a staged combustion cycle. RD-0124 engines are used on the Soyuz-2.1b and Soyuz-2-1v. A slight variation of the engine, the RD-0124A, is used on the Angara rocket family URM-2 upper stage. RD-0124 is developed by Chemical Automatics Design Bureau in Voronezh.

Soyuz-2-1v Russian expendable carrier rocket

The Soyuz-2.1v, GRAU index 14A15, known earlier in development as the Soyuz-1, is a Russian expendable launch vehicle. It was derived from the Soyuz-2.1b, and is a member of the R-7 family of rockets. It is built by TsSKB Progress, at Samara in Russia. Launches are conducted from existing facilities at the Plesetsk Cosmodrome in Northwest Russia, with pads also available at the Baikonur Cosmodrome in Kazakhstan, and new facilities at the Vostochny Cosmodrome in Eastern Russia.

RD-0146 Russian rocket engine

The RD-0146 is a liquid-fuel cryogenic rocket engine developed by KBKhA Kosberg in Voronezh, Russia.

RD-0110 Soviet (later Russian) rocket engine

The RD-0110 is a rocket engine burning liquid oxygen and kerosene in a gas generator combustion cycle. It has four fixed nozzles and the output of the gas generator is directed to four secondary vernier nozzles to supply vector control of the stage. It has an extensive flight history with its initial versions having flown more than 57 years ago.

RD-0109 Rocket engine

The RD-0109 is a rocket engine burning liquid oxygen and kerosene in a gas generator combustion cycle. It has single nozzle and is an evolution of the RD-0105. It was the engine used on the Vostok Block-E that launched Yuri Gagarin to orbit.

The RD-0214 (GRAU Index: 8D811) is a rocket vernier engine burning N2O4 and UDMH in a gas generator cycle. It has four nozzles that can each gimbal 45 in plane to provide TVC to the RD-0212 propulsion module of Proton third stage. It is a revised version of the RD-0207.

RD-0210

The RD-0210 (GRAU Index: 8D411K) is also known as the RD-465. It and its twin, the RD-0211, are rocket engines burning N2O4 and UDMH in an oxidizer rich staged combustion cycle. They have single nozzle, possess TVC and are the latest evolution in the RD-0203/4 lineage. They are the engines used on the Proton second stage. The RD-0213 is a fixed nozzle variation that is used on the RD-0212 module of the Proton third stage.

The RD-0216 and RD-0217 are liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The only difference between the RD-0216 and the RD-0217 is that the latter has not a heat exchanger to heat the pressuring gasses for the tanks. Three RD-0216 and one RD-0217 were used on the first stage of the UR-100 ICBM. The engines were manufactured until 1974 and stayed in operational use until 1991. More than 1100 engines were produced.

The YF-75D is a liquid cryogenic rocket engine burning liquid hydrogen and liquid oxygen in a closed expander cycle. It is China's third generation of upper stage cryogenic propellant engine, after the YF-73 and the YF-75. It is used in a dual engine mount in the H5-2 second stage of the Long March 5 launch vehicles. Within the mount, each engine can gimbal individually to enable thrust vectoring control. As its predecessor, the YF-75 it can adjust its mixture ratio to optimize propellant consumption. But as an additional improvement, it can do multiple restarts, against the single one of its predecessor.

Voronezh Mechanical Plant is a Russian engine and heavy machinery manufacturing plant. It is located in the city of Voronezh, in the Voronezh Oblast.

The Soyuz-7 or Amur is a partially-reusable, methane–fueled, orbital launch vehicle currently in the design concept stage of development by the Roscosmos State Corporation in Russia. Design began by 2020, with operational flights planned for no earlier than 2026. Amur is intended to substitute for the existing Soyuz-2, at a much lower per launch cost.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 "Steering engine RD0110R (14D24). Carrier rocket "Soyuz-2-1v"" (in Russian). KBKhA. Archived from the original on 11 August 2013.
  2. 1 2 3 Zak, Anatoly. "RD-0110R". russianspaceweb.com. Retrieved 2015-06-01.