Rocketdyne F-1

Last updated
F-1
F-1 rocket engine.jpg
F-1 rocket engine specifications
Country of origin United States
Manufacturer Rocketdyne
Liquid-fuel engine
Propellant LOX / RP-1
Mixture ratio2.27 (69% O2, 31% RP-1)
Cycle Gas-generator (Open Cycle)
Performance
Thrust, vacuum1,746,000 lbf (7,770 kN)
Thrust, sea-level1,522,000 lbf (6,770 kN)
Thrust-to-weight ratio 94.1
Chamber pressure 70 bars (1,015 psi; 7 MPa)
Specific impulse, vacuum304 s (2.98 km/s)
Specific impulse, sea-level263 s (2.58 km/s)
Mass flow
  • 3,945 lb/s (1,789 kg/s) (LOX)
  • 1,738 lb/s (788 kg/s) (RP-1)
Burn time150-163 s
Dimensions
Length18.5 feet (5.6 m)
Diameter12.2 feet (3.7 m)
Dry weight18,500 lb (8,400 kg)
Used in
Saturn V

The F-1, commonly known as Rocketdyne F-1, is a rocket engine developed by Rocketdyne. This engine uses a gas-generator cycle developed in the United States in the late 1950s and was used in the Saturn V rocket in the 1960s and early 1970s. Five F-1 engines were used in the S-IC first stage of each Saturn V, which served as the main launch vehicle of the Apollo program. The F-1 remains the most powerful single combustion chamber liquid-propellant rocket engine ever developed. [1]

Contents

History

Wernher von Braun with the F-1 engines of the Saturn V first stage at the U.S. Space and Rocket Center S-IC engines and Von Braun.jpg
Wernher von Braun with the F-1 engines of the Saturn V first stage at the U.S. Space and Rocket Center

Rocketdyne developed the F-1 and the E-1 to meet a 1955 U.S. Air Force requirement for a very large rocket engine. The E-1, although successfully tested in static firing, was quickly seen as a technological dead-end, and was abandoned for the larger, more powerful F-1. The Air Force eventually halted development of the F-1 because of a lack of requirement for such a large engine. However, the recently created National Aeronautics and Space Administration (NASA) appreciated the usefulness of an engine with so much power and contracted Rocketdyne to complete its development. Test firings of F-1 components had been performed as early as 1957. The first static firing of a full-stage developmental F-1 was performed in March 1959. The first F-1 was delivered to NASA MSFC in October 1963. In December 1964, the F-1 completed flight rating tests. Testing continued at least through 1965. [2]

Early development tests revealed serious combustion instability problems which sometimes caused catastrophic failure. [3] Initially, progress on this problem was slow, as it was intermittent and unpredictable. Oscillations of 4 kHz with harmonics to 24 kHz were observed. Eventually, engineers developed a diagnostic technique of detonating small explosive charges (which they called "bombs") outside the combustion chamber, through a tangential tube (RDX, C-4 or black powder were used) while the engine was firing. This allowed them to determine exactly how the running chamber responded to variations in pressure, and to determine how to nullify these oscillations. The designers could then quickly experiment with different co-axial fuel-injector designs to obtain the one most resistant to instability. These problems were addressed from 1959 through 1961. Eventually, engine combustion was so stable, it would self-damp artificially induced instability within one-tenth of a second.

Design

F-1 rocket engine components SaturnF1EngineDiagram.png
F-1 rocket engine components

The F-1 engine is the most powerful single-nozzle liquid-fueled rocket engine ever flown. The M-1 rocket engine was designed to have more thrust, but it was only tested at the component level. The later developed RD-170 is much more stable, technically more advanced, and produces more thrust, but is not of a single chamber design. The F-1 burned RP-1 (rocket grade kerosene) as the fuel and used liquid oxygen (LOX) as the oxidizer. A turbopump was used to inject fuel and oxygen into the combustion chamber.

One notable challenge in the construction of the F-1 was regenerative cooling of the thrust chamber. Chemical engineer Dennis "Dan" Brevik was faced with the task of ensuring the preliminary combustion chamber tube bundle and manifold design produced by Al Bokstellar would run cool. In essence, Brevik's job was to "make sure it doesn’t melt." Through Brevik's calculations of the hydrodynamic and thermodynamic characteristics of the F-1, he and his team were able to fix an issue known as ‘starvation’. This is when an imbalance of static pressure leads to 'hot spots' in the manifolds. The material used for the F-1 thrust chamber tube bundle, reinforcing bands and manifold was Inconel-X750, a refractory nickel based alloy capable of withstanding high temperatures. [4]

The heart of the engine was the thrust chamber, which mixed and burned the fuel and oxidizer to produce thrust. A domed chamber at the top of the engine served as a manifold supplying liquid oxygen to the injectors, and also served as a mount for the gimbal bearing which transmitted the thrust to the body of the rocket. Below this dome were the injectors, which directed fuel and oxidizer into the thrust chamber in a way designed to promote mixing and combustion. Fuel was supplied to the injectors from a separate manifold; some of the fuel first traveled in 178 tubes down the length of the thrust chamber — which formed approximately the upper half of the exhaust nozzle — and back in order to cool the nozzle.

A gas generator was used to drive a turbine which drove separate fuel and oxygen pumps, each feeding the thrust chamber assembly. The turbine was driven at 5,500 RPM, producing 55,000 brake horsepower (41 MW). The fuel pump delivered 15,471 US gallons (58,560 litres) of RP-1 per minute while the oxidizer pump delivered 24,811 US gal (93,920 L) of liquid oxygen per minute. Environmentally, the turbopump was required to withstand temperatures ranging from input gas at 1,500 °F (820 °C) to liquid oxygen at −300 °F (−184 °C). Structurally, fuel was used to lubricate and cool the turbine bearings.

Test firing of an F-1 engine at Edwards Air Force Base (The large spheres atop the platform are Horton spheres for the fuel and oxidizer) F-1 Engine Test Firing.jpg
Test firing of an F-1 engine at Edwards Air Force Base (The large spheres atop the platform are Horton spheres for the fuel and oxidizer)

Below the thrust chamber was the nozzle extension, roughly half the length of the engine. This extension increased the expansion ratio of the engine from 10:1 to 16:1. The exhaust from the turbine was fed into the nozzle extension by a large, tapered manifold; this relatively cool gas formed a film which protected the nozzle extension from the hot (5,800 °F (3,200 °C)) exhaust gas. [5]

Each second, a single F-1 burned 5,683 pounds (2,578 kg) of oxidizer and fuel: 3,945 lb (1,789 kg) of liquid oxygen and 1,738 lb (788 kg) of RP-1, generating 1,500,000 lbf (6.7 MN; 680 tf) of thrust. This equated to a flow rate of 671.4 US gal (2,542 L) per second; 413.5 US gal (1,565 L) of LOX and 257.9 US gal (976 L) of RP-1. During their two and a half minutes of operation, the five F-1s propelled the Saturn V vehicle to a height of 42 miles (222,000 ft; 68 km) and a speed of 6,164 mph (9,920 km/h). The combined flow rate of the five F-1s in the Saturn V was 3,357 US gal (12,710 L) [5] or 28,415 lb (12,890 kg) per second. Each F-1 engine had more thrust than three Space Shuttle Main Engines combined. [6]

Pre and post ignition procedures

During static test firing, the kerosene-based RP-1 fuel left hydrocarbon deposits and vapors in the engine post test firing. These had to be removed from the engine to avoid problems during engine handling and future firing, and the solvent trichloroethylene (TCE) was used to clean the engine's fuel system immediately before and after each test firing. The cleaning procedure involved pumping TCE through the engine's fuel system and letting the solvent overflow for a period ranging from several seconds to 30–35 minutes, depending upon the engine and the severity of the deposits. For some engines,[ which? ] the engine's gas generator and LOX dome were also flushed with TCE prior to test firing. [7] [8] The F-1 rocket engine had its LOX dome, gas generator, and thrust chamber fuel jacket flushed with TCE during launch preparations. [8]

Specifications

Installation of F-1 engines to the Saturn V S-IC Stage. The nozzle extension is absent from the engine being fitted. F-1 Engines Being Installed.jpg
Installation of F-1 engines to the Saturn V S-IC Stage. The nozzle extension is absent from the engine being fitted.
Apollo 4, 6, and 8Apollo 9–17
Thrust, sea level1,500,000 lbf (6.7 MN)1,522,000 lbf (6.77 MN)
Burn time150 seconds165 seconds
Specific impulse 260 s (2.5 km/s)263 s (2.58 km/s)
Chamber pressure70 bar (1,015 psi; 7 MPa)70 bar (1,015 psi; 7 MPa)
Engine weight dry18,416 lb (8,353 kg)18,500 lb (8,400 kg)
Engine weight burnout20,096 lb (9,115 kg)20,180 lb (9,150 kg)
Height19 ft (5.8 m)
Diameter12.3 ft (3.7 m)
Exit to throat ratio16:1
Propellants LOX and RP-1
Mixture mass ratio2.27:1 oxidizer to fuel
ContractorNAA/Rocketdyne
Vehicle applicationSaturn V / S-IC 1st stage - 5 engines

Sources: [5] [9]

F-1 improvements

F-1 on display at the U.S. Space & Rocket Center in Huntsville, Alabama. F-1 rocket engine at United States Space and Rocket Center in 2006.jpg
F-1 on display at the U.S. Space & Rocket Center in Huntsville, Alabama.

F-1 thrust and efficiency were improved between Apollo 8 (SA-503) and Apollo 17 (SA-512), which was necessary to meet the increasing payload capacity demands of later Apollo missions. There were small performance variations between engines on a given mission, and variations in average thrust between missions. For Apollo 15, F-1 performance was:

Measuring and making comparisons of rocket engine thrust is more complicated[ why? ] than it may first appear.[ according to whom? ] Based on actual measurement the liftoff thrust of Apollo 15 was 7,823,000 lbf (34.80 MN), which equates to an average F-1 thrust of 1,565,000 lbf (6.96 MN) – slightly more than the specified value.[ citation needed ]

F-1 engine on display
at Kennedy Space Center F-1 rocket engine at KSC.jpg
F-1 engine on display
at Kennedy Space Center

F-1A after Apollo

During the 1960s, Rocketdyne undertook uprating development of the F-1 resulting in the new engine specification F-1A. While outwardly very similar to the F-1, the F-1A produced about 20% greater thrust, 1,800,000 lbf (8 MN) in tests, and would have been used on future Saturn V vehicles in the post-Apollo era. However, the Saturn V production line was closed prior to the end of Project Apollo and no F-1A engines ever flew. [10]

There were proposals to use eight F-1 engines on the first stage of the Saturn C-8 and Nova rockets. Numerous proposals have been made from the 1970s and on to develop new expendable boosters based around the F-1 engine design. These include the Saturn-Shuttle, and the Pyrios booster (see below) in 2013. [10] As of 2013, none have proceeded beyond the initial study phase. The Comet HLLV would have used five F-1A engines on the main core and two on each of the boosters. [11]

The F-1 is the largest, highest-thrust single-chamber, single-nozzle liquid-fuel engine flown. Larger solid-fuel engines exist, such as the Space Shuttle Solid Rocket Booster with a sea-level liftoff thrust of 2,800,000 lbf (12.45 MN) apiece. The Soviet (now Russian) RD-170 can develop more thrust than the F-1, at 1,630,000 lbf (7.25 MN) per engine at sea level, however, each engine uses four combustion chambers instead of one, to solve the combustion instability problem.

F-1B booster

The Vulcain for the Ariane 5 rocket uses a similar cycle design to F-1 engine, with the turbine exhaust gases piped directly overboard. Moteur-Vulcain.jpg
The Vulcain for the Ariane 5 rocket uses a similar cycle design to F-1 engine, with the turbine exhaust gases piped directly overboard.

As part of the Space Launch System (SLS) program, NASA had been running the Advanced Booster Competition, which was scheduled to end with the selection of a winning booster configuration in 2015. In 2013, engineers at the Marshall Space Flight Center began tests with an original F-1, serial number F-6049, which was removed from Apollo 11 due to a glitch. The engine was never used, and for many years it was at the Smithsonian Institution. The tests are designed to refamiliarize NASA with the design and propellants of the F-1 in anticipation of using an evolved version of the engine in future deep-space flight applications. [12]

In 2012, Pratt & Whitney, Rocketdyne, and Dynetics, Inc. presented a competitor known as Pyrios, a liquid rocket booster, in NASA's Advanced Booster Program, which aims to find a more powerful successor to the five-segment Space Shuttle Solid Rocket Boosters intended for early versions of the Space Launch System. Pyrios uses two increased-thrust and heavily modified F-1B engines per booster. [13] [14] Due to the engine's potential advantage in specific impulse, if this F-1B configuration (using four F-1Bs in total) were integrated with the SLS Block 2, the vehicle could deliver 150 tonnes (330,000 lb) to low Earth orbit, [15] while 130 tonnes (290,000 lb) is what is regarded as achievable with the planned solid boosters combined with a four-engine RS-25 core stage. [16]

The F-1B engine has a design goal to be at least as powerful as the unflown F-1A, while also being more cost effective. The design incorporates a greatly simplified combustion chamber, a reduced number of engine parts, and the removal of the F-1 exhaust recycling system, including the turbine exhaust mid-nozzle and the "curtain" cooling manifold, with the turbine exhaust having a separate outlet passage [17] beside the shortened main nozzle on the F-1B. The reduction in parts costs is aided by using selective laser melting in the production of some metallic parts. [13] [18] The resulting F-1B engine is intended to produce 1,800,000 lbf (8.0 MN) of thrust at sea level, a 15% increase over the approximate 1,550,000 lbf (6.9 MN) of thrust that the mature Apollo 15 F-1 engines produced. [13] [ needs update ]

Locations of F-1 engines

Unflown F-1 engine on display at Pratt & Whitney (now Aerojet Rocketdyne), Canoga Park, Los Angeles Pratt & Whitney Rocketdyne Division.JPG
Unflown F-1 engine on display at Pratt & Whitney (now Aerojet Rocketdyne), Canoga Park, Los Angeles
F-1 engine on display at INFINITY Science Center F-1 Engine at INFINITY Science Center.jpg
F-1 engine on display at INFINITY Science Center

Sixty-five F-1 engines were launched aboard thirteen Saturn Vs, and each first stage landed in the Atlantic Ocean. Ten of these followed approximately the same flight azimuth of 72 degrees, but Apollo 15 and Apollo 17 followed significantly more southerly azimuths (80.088 degrees and 91.503 degrees, respectively). The Skylab launch vehicle flew at a more northerly azimuth to reach a higher inclination orbit (50 degrees versus the usual 32.5 degrees). [19]

Ten F-1 engines were installed on two production Saturn Vs that never flew. The first stage from SA-514 is on display at the Johnson Space Center in Houston (although owned by the Smithsonian) and the first stage from SA-515 is on display at the INFINITY Science Center at John C. Stennis Space Center in Mississippi.

Another ten engines were installed on two ground-test Saturn Vs never intended to fly. The S-IC-T "All Systems Test Stage," a ground-test replica, is on display as the first stage of a complete Saturn V at the Kennedy Space Center in Florida. SA-500D, the Dynamic Test Vehicle, is on display at the U.S. Space and Rocket Center in Huntsville, Alabama. [20]

A test engine is on display at the Powerhouse Museum in Sydney, Australia. It was the 25th out of 114 research and development engines built by Rocketdyne and it was fired 35 times. The engine is on loan to the museum from the Smithsonian's National Air and Space Museum. It is the only F-1 on display outside the United States. [21]

An F-1 engine, on loan from the National Air and Space Museum, is on display at the Air Zoo in Portage, Michigan. [22]

An F-1 engine is on a horizontal display stand at Science Museum Oklahoma in Oklahoma City.[ citation needed ]

F-1 engine F-6049 is displayed vertically at the Museum of Flight in Seattle, Washington as part of the Apollo exhibit.[ citation needed ]

An F-1 engine is installed vertically as a memorial to the Rocketdyne builders on De Soto Avenue, across the street from the former Rocketdyne plant in Canoga Park, California. It was installed in 1979, and moved from the parking lot across the street some time after 1980. [23]

An F-1 Engine is on display outside of The New Mexico Museum of Space History in Alamogordo, New Mexico.[ citation needed ]

The thrust chamber of an F-1 is on display at the Cosmosphere. [24]

Recovery

Recovered F-1 engine parts on display at the Museum of Flight in Seattle. Recovered F-1 Engine parts .jpg
Recovered F-1 engine parts on display at the Museum of Flight in Seattle.
Recovered F-1 engine injector from Apollo 12 mission on display at the Museum of Flight in Seattle. Recovered F-1 engine injector.jpg
Recovered F-1 engine injector from Apollo 12 mission on display at the Museum of Flight in Seattle.

On March 28, 2012, a team funded by Jeff Bezos, founder of Amazon.com, reported that they had located the F-1 rocket engines from an Apollo mission using sonar equipment. [25] Bezos stated he planned to raise at least one of the engines, which rest at a depth of 14,000 feet (4,300 m), about 400 miles (640 km) east of Cape Canaveral, Florida. However, the condition of the engines, which had been submerged for more than 40 years, was unknown. [26] NASA Administrator Charles Bolden released a statement congratulating Bezos and his team for their find and wished them success. He also affirmed NASA's position that any recovered artifacts would remain property of the agency, but that they would likely be offered to the Smithsonian Institution and other museums, depending on the number recovered. [27]

On March 20, 2013, Bezos announced he had succeeded in bringing parts of an F-1 engine to the surface, and released photographs. Bezos noted, "Many of the original serial numbers are missing or partially missing, which is going to make mission identification difficult. We might see more during restoration." [28] The recovery ship was Seabed Worker , and had on board a team of specialists organized by Bezos for the recovery effort. [29] On July 19, 2013, Bezos revealed that the serial number of one of the recovered engines is Rocketdyne serial number 2044 (equating to NASA number 6044), the #5 (center) engine that helped Neil Armstrong, Buzz Aldrin, and Michael Collins to reach the Moon with the Apollo 11 mission. [30] The recovered parts were brought to the Kansas Cosmosphere and Space Center in Hutchinson for the process of conservation. [30] [29]

In August 2014, it was revealed that parts of two different F-1 engines were recovered, one from Apollo 11 and one from another Apollo flight, while a photograph of a cleaned-up engine was released. Bezos plans to put the engines on display at various places, including the National Air and Space Museum in Washington, D.C. [29]

On May 20, 2017, the Apollo permanent exhibit opened at the Museum of Flight in Seattle, WA and displays engine artifacts recovered including the thrust chamber and thrust chamber injector of the number 3 engine from the Apollo 12 mission, as well as a gas generator from an engine that powered the Apollo 16 flight.

See also

Related Research Articles

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Saturn IB</span> American rocket used in the Apollo program during the 1960s and 70s

The Saturn IB(also known as the uprated Saturn I) was an American launch vehicle commissioned by the National Aeronautics and Space Administration (NASA) for the Apollo program. It uprated the Saturn I by replacing the S-IV second stage, with the S-IVB. The S-IB first stage also increased the S-I baseline's thrust from 1,500,000 pounds-force (6,700,000 N) to 1,600,000 pounds-force (7,100,000 N) and propellant load by 3.1%. This increased the Saturn I's low Earth orbit payload capability from 20,000 pounds (9,100 kg) to 46,000 pounds (21,000 kg), enough for early flight tests of a half-fueled Apollo command and service module (CSM) or a fully fueled Apollo Lunar Module (LM), before the larger Saturn V needed for lunar flight was ready.

The Saturn I was a rocket designed as the United States' first medium lift launch vehicle for up to 20,000-pound (9,100 kg) low Earth orbit payloads. The rocket's first stage was built as a cluster of propellant tanks engineered from older rocket tank designs, leading critics to jokingly refer to it as "Cluster's Last Stand". Its development was taken over from the Advanced Research Projects Agency in 1958 by the newly formed civilian NASA. Its design proved sound and flexible. It was successful in initiating the development of liquid hydrogen-fueled rocket propulsion, launching the Pegasus satellites, and flight verification of the Apollo command and service module launch phase aerodynamics. Ten Saturn I rockets were flown before it was replaced by the heavy lift derivative Saturn IB, which used a larger, higher total impulse second stage and an improved guidance and control system. It also led the way to development of the super-heavy lift Saturn V which carried the first men to landings on the Moon in the Apollo program.

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is used on the Space Launch System (SLS).

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">Rocketdyne H-1</span> American kerolox rocket engine

The Rocketdyne H-1 was a 205,000 lbf (910 kN) thrust liquid-propellant rocket engine burning LOX and RP-1. The H-1 was developed for use in the S-I and S-IB first stages of the Saturn I and Saturn IB rockets, respectively, where it was used in clusters of eight engines. After the Apollo program, surplus H-1 engines were rebranded and reworked as the Rocketdyne RS-27 engine with first usage on the Delta 2000 series in 1974. RS-27 engines continued to be used up until 1992 when the first version of the Delta II, Delta 6000, was retired. The RS-27A variant, boasting slightly upgraded performance, was also used on the later Delta II and Delta III rockets, with the former flying until 2018.

<span class="mw-page-title-main">RL10</span> Liquid fuel cryogenic rocket engine, typically used on rocket upper stages

The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lbf) of thrust per engine in vacuum. Three RL10 versions are in production for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV. Three more versions are in development for the Exploration Upper Stage of the Space Launch System and the Centaur V of the Vulcan rocket.

<span class="mw-page-title-main">SpaceX Merlin</span> Rocket engine in SpaceX Falcon launch vehicles

Merlin is a family of rocket engines developed by SpaceX for use on its Falcon 1, Falcon 9 and Falcon Heavy launch vehicles. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.

<span class="mw-page-title-main">RS-68</span> A large hydrogen-oxygen rocket engine that powers the Delta IV rocket

The Aerojet Rocketdyne RS-68 is a liquid-fuel rocket engine that uses liquid hydrogen (LH2) and liquid oxygen (LOX) as propellants in a gas-generator power cycle. It is the largest hydrogen-fueled rocket engine ever flown.

A liquid rocket booster (LRB) uses liquid fuel and oxidizer to give a liquid-propellant or hybrid rocket an extra boost at take-off, and/or increase the total payload that can be carried. It is attached to the side of a rocket. Unlike solid rocket boosters, LRBs can be throttled down if the engines are designed to allow it, and can be shut down safely in an emergency for additional escape options in human spaceflight.

<span class="mw-page-title-main">Aerojet M-1</span> One of the largest rocket engines to be designed

The Aerojet M-1 was one of the largest and most powerful liquid-hydrogen-fueled liquid-fuel rocket engine to be designed and component-tested. It was originally developed during the 1950s by the US Air Force. The M-1 offered a baseline thrust of 6.67 MN and an immediate growth target of 8 MN. If built, the M-1 would have been larger and more efficient than the famed F-1 that powered the first stage of the Saturn V rocket to the Moon.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

The Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

Rocketdyne's E-1 was a liquid propellant rocket engine originally built as a backup design for the Titan I missile. While it was being developed, Heinz-Hermann Koelle at the Army Ballistic Missile Agency (ABMA) selected it as the primary engine for the rocket that would emerge as the Saturn I. In the end, the Titan went ahead with its primary engine, and the Saturn team decided to use the lower-thrust H-1 in order to speed development. The E-1 project was cancelled in 1959, but Rocketdyne's success with the design gave NASA confidence in Rocketdyne's ability to deliver the much larger F-1, which powered the first stage of the Saturn V missions to the Moon.

Fastrac was a turbo pump-fed, liquid rocket engine. The engine was designed by NASA as part of the low cost X-34 Reusable Launch Vehicle (RLV) and as part of the Low Cost Booster Technology project. This engine was later known as the MC-1 engine when it was merged into the X-34 project.

<span class="mw-page-title-main">SpaceX rocket engines</span> Rocket engines developed by SpaceX

Since the founding of SpaceX in 2002, the company has developed four families of rocket engines — Merlin, Kestrel, Draco and SuperDraco — and is currently developing another rocket engine: Raptor, and after 2020, a new line of methalox thrusters.

The BE-3 is a LH2/LOX rocket engine developed by Blue Origin.

<span class="mw-page-title-main">BE-4</span> Large staged combustion rocket engine by Blue Origin

The Blue Engine 4 (BE-4) is an oxygen-rich liquefied-methane-fueled staged-combustion rocket engine produced by Blue Origin. The BE-4 was developed with private and public funding. The engine has been designed to produce 2.4 meganewtons (550,000 lbf) of thrust at sea level.

The MARC-60, also known as MB-60, MB-XX, and RS-73, is a liquid-fuel cryogenic rocket engine designed as a collaborative effort by Japan's Mitsubishi Heavy Industries and US' Aerojet Rocketdyne. The engine burns cryogenic liquid oxygen and liquid hydrogen in an open expander cycle, driving the turbopumps with waste heat from the main combustion process.

<span class="mw-page-title-main">S-IC-T</span> American super heavy-lift expendable rocket first stage of Saturn V, test unit

S-IC-T is a Saturn V first stage, S-IC rocket, of the three stage rocket system. S-IC-T was built by Boeing Company, under contact from National Aeronautics and Space Administration, to be a static test rocket. The main role of the S-IC-T was the testing of the five liquid fuel rocket engines to be used in the Apollo program. S-IC-T static test fired the rockets at NASA Mississippi Test Facility, now known as Stennis Space Center. S-IC-T was assembled at the Marshall Space Flight Center in Huntsville, Alabama. S-IC-T was given the nickname T-Bird. The first burn test was on April 10, 1965. The Saturn V's S-IC-T rocket is a first stage of the super heavy-lift launch vehicle. S-IC-T is now on display at Kennedy Space Center in Florida.

References

Notes
  1. W. David Woods, How Apollo Flew to the Moon, Springer, 2008, ISBN   978-0-387-71675-6, p. 19
  2. "NASA Rocketdyne document" (PDF). Archived from the original (PDF) on 2011-10-15. Retrieved 2013-12-27.
  3. Ellison, Renea; Moser, Marlow, Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow (PDF), Huntsville, Alabama: Propulsion Research Center, University of Alabama in Huntsville, archived from the original (PDF) on 2006-09-07
  4. Young, Anthony (2008). The Saturn V F-1 Engine: Powering Apollo into History. Space Exploration. Praxis. ISBN   978-0-387-09629-2. Archived from the original on 2019-12-06. Retrieved 2019-12-06.
  5. 1 2 3 Saturn V News Reference: F-1 Engine Fact Sheet (PDF), National Aeronautics and Space Administration, December 1968, pp. 3–3, 3–4, archived from the original (PDF) on 2005-12-21, retrieved 2008-06-01
  6. NSTS 1988 News Reference Manual, NASA, archived from the original on 2019-11-30, retrieved 2008-07-03
  7. "The Use of Trichloroethylene at NASA's SSFL Sites" (PDF). Archived from the original (PDF) on 2013-11-14. Retrieved 2013-12-27.
  8. 1 2 "F-1 Rocket Engine Operating Instructions". Ntrs.nasa.gov. 2013-03-01. Archived from the original on 2013-11-14. Retrieved 2013-12-27.
  9. F-1 Engine (chart), NASA Marshall Space Flight Center, MSFC-9801771, archived from the original on 2014-12-26, retrieved 2008-06-01
  10. 1 2 Hutchinson, Lee (2013-04-14). "New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust". ARS technica. Archived from the original on 2017-12-02. Retrieved 2013-04-15.
  11. "First Lunar Outpost". www.astronautix.com. Archived from the original on 2020-01-14. Retrieved 2020-01-10.
  12. Jay Reeves (2013-01-24). "NASA testing vintage engine from Apollo 11 rocket". Associated Press. Archived from the original on 2022-01-25. Retrieved 2013-01-24.
  13. 1 2 3 Lee Hutchinson (2013-04-15). "New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust". Ars Technica. Archived from the original on 2017-12-02. Retrieved 2013-04-15.
  14. "Rocket companies hope to repurpose Saturn 5 engines". Archived from the original on 2012-04-22. Retrieved 2012-04-20.
  15. Chris Bergin (2012-11-09). "Dynetics and PWR aiming to liquidize SLS booster competition with F-1 power". NASASpaceFlight.com. Archived from the original on 2013-09-27. Retrieved 2013-12-27.
  16. "Table 2. ATK Advanced Booster Satisfies NASA Exploration Lift Requirements". Archived from the original on 2016-03-03. Retrieved 2015-08-18.
  17. Hutchinson, Lee (2013-04-15). "New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust". Ars Technica. Retrieved 2024-04-12.
  18. "Dynetics reporting "outstanding" progress on F-1B rocket engine". Ars Technica. 2013-08-13. Archived from the original on 2013-08-15. Retrieved 2013-08-13.
  19. Orloff, Richard (September 2004). NASA, Apollo By the Numbers, "Earth Orbit Data" Archived 2017-12-26 at the Wayback Machine
  20. Wright, Mike. "Three Saturn Vs on Display Teach Lessons in Space History". NASA. Archived from the original on November 15, 2005. Retrieved January 18, 2016.
  21. Doherty, Kerry (November 2009). Powerhouse Museum "Inside the Collection" Archived 2014-11-15 at the Wayback Machine
  22. "Air Zoo web site". Archived from the original on 2022-01-18. Retrieved 2022-01-25.
  23. Preston. Jay W., CSP, PE. Plaque at the memorial and observations.
  24. https://cosmospheretour.com/exhibit.php?exhibit_no=55
  25. Kluger, Jeffrey (April 29, 2012). "Has Bezos Really Found the Apollo 11 Engines?". Time.com. Archived from the original on May 4, 2012.
  26. Clark, Stephen (April 29, 2012). "NASA sees no problem recovering Apollo engines". Spaceflight Now. Archived from the original on May 4, 2012.
  27. Weaver, David (April 30, 2012). "NASA Administrator Supports Apollo Engine Recovery". NASA.gov. Release 12-102. Archived from the original on May 2, 2012.
  28. Walker, Brian (March 20, 2013). "Apollo Mission Rocket Engines Recovered" Archived 2013-03-23 at the Wayback Machine , CNN Light Years blog
  29. 1 2 3 Clash, Jim (2014-08-01). "Billionaire Jeff Bezos Talks About His Secret Passion: Space Travel". Forbes. Archived from the original on 2014-08-08. Retrieved 2014-08-03.
  30. 1 2 "Updates: 19 July 2013" Archived 20 October 2007 at the Wayback Machine , Bezos Expeditions, 19 July 2013, accessed 21 July 2013.
Bibliography
Manuals