Lunar escape systems

Last updated
Concept of LESS ApolloLunarEscapeSystemExample.jpg
Concept of LESS

Lunar escape systems (LESS) were a series of emergency vehicles designed for never-flown long-duration Apollo missions. Because these missions were more hypothetical than the planned cancelled Apollo missions, the designs were never constructed. This concept was an outgrowth of the Lunar Flying Vehicle [1] by Bell Aerospace (a lunar surface mobility design that was cancelled in favor of the less risky Lunar Rover).

Contents

Details

As NASA planned for longer stays on the Moon after the first few Apollo flights, they had to consider a number of new issues, one of which was what to do if the astronauts cannot get back. Typically the longer a spacecraft is idle the less reliable it becomes, so after a stay of two weeks on the Moon the Lunar Module ascent engine or other essential systems might fail to function, leaving the astronauts stranded on the Moon without enough supplies to survive until a rescue mission could arrive from Earth.

For one possible solution, NASA studied a number of low-cost, low-mass lunar escape systems (LESS) which could be carried on the lunar module as a backup, rather like a lifeboat on a ship.

'KISS' was the order of the day, with a few basic assumptions about any operational LESS system:

  1. The LESS would use fuel from the LM ascent stage tanks, so no extra fuel would be carried on the mission.
  2. Rather than the multiple redundant systems used elsewhere in the Apollo program, the LESS would be as simple as possible while still achieving its mission.
  3. All life support would come from the astronauts' space-suit backpacks. This greatly reduced the mass and complexity of the LESS, but required that the astronauts could rendezvous with the orbiting CSM within the four-hour backpack oxygen supply.
  4. The LESS would support stays of up to 14 days on the lunar surface.
Unpacking the LESS from the lunar module LoweringLESSToLunarSurface.jpg
Unpacking the LESS from the lunar module

Other issues were that the LESS had to be as light as possible so as not to significantly reduce the cargo capacity of the LEM, and easy to pack into the LM in such a way that it would not interfere with the other cargo. One consequence was that most designs used detachable legs: the legs would be set up on the lunar surface, the LESS assembled on top of them, and the legs then left behind as the LESS launched. This did not directly reduce the mass required, but it did reduce the empty mass of the LESS, which reduced the fuel required to lift it to orbit, which also reduced the thrust required from the engines and the total mass of the design.

The LESS would pack flat in the side of the LM descent stage, and arms and wires would be provided to allow controlled removal of the LESS and ensure it did not harm the astronaut who was removing it. A protective cover also doubled as a sled, so the LESS could be pushed or pulled along the ground to reach a safe launch position prior to assembly. The assembly operations were expected to take at least forty-five minutes, with a further two hours for checkout and fuelling before launch. On long-duration missions the crew might assemble the LESS early in the mission as a precaution.

Given the cut-down nature of the LESS compared to a typical spacecraft of its era, the primary differences between designs were in propulsion, guidance, navigation and control.

Propulsion

Typical LESS designs used flexible fuel tanks so that it could fold flat for storage. When the LESS was connected to the LM ascent stage, the flexible tanks would be filled and expand to their full size ready for flight.

Some LESS designs used a single engine under the center, but many used multiple engines around the edge, typically based on the Apollo reaction control system (RCS) thrusters used for attitude control on the command and service module (CSM) and lunar module (LM). These had a thrust of around 100 pounds-force (440 N) each, so putting eight thrusters in pairs at the corners of a square gave enough thrust to lift two astronauts to orbit.

Another benefit of the RCS-based designs was that the RCS thrusters could be fired in bursts as short as ten milliseconds, so instead of complex throttling hardware they could simply be pulsed to adjust the average thrust over time. They could also be used to provide attitude control by varying the firing rate of different thrusters around the edge of the LESS.

Guidance

Guidance in typical LESS designs was simple: an 'eight-ball' to show spacecraft attitude, a clock to show time since liftoff, and a planned pitch program. The Apollo Guidance Computer used as an autopilot for the CSM and LM had a mass of around a hundred pounds and consumed a significant amount of power, so computer controlled flight was out of the question. This would be one of the few cases where an astronaut flew a rocket manually all the way to orbit, and with far less instrumentation than normal.

The astronauts would wait until the appropriate liftoff time that would put them into an orbit close to the CSM, then launch. The pilot would attempt to hold a constant heading, and at pre-determined times during the burn he would adjust the pitch to pre-determined angles. This controlled the vertical and horizontal velocity of the LESS and consequently the orbit that it would enter: the engine would be shut down at a pre-determined time when they should have reached the correct orbit.

Even if the pilot made a few errors on the way to space, that was not necessarily fatal. The CSM had a fuel reserve, and plans would allow it to change velocity by a maximum of around 250 meters per second in order to rendezvous with the LESS after orbit insertion. While that did not allow much change in orbital inclination, the CSM could significantly change orbital altitude to match the LESS. The biggest threat from piloting errors was that the crew would run out of oxygen before the CSM could reach them.

The LESS would be equipped with a flashing light and VHF radio beacon to simplify tracking from the CSM. On reaching the rendezvous point the CSM pilot would dock with the LESS using the same docking probe that was used to dock with the LM, and a special attachment on the front of the LESS. This would require some skilled flying on the part of the pilot, as any use of the front-facing RCS jets could present a serious hazard to the astronauts on the LESS if the hot exhaust gases hit them.

Once docked the CSM pilot would depressurise the Command Module and open the hatch to space, so the astronauts on the LESS could use the external hand-holds on the Command Module to crawl to the hatch and climb inside. The crew would then separate the CSM from the LESS and leave it in lunar orbit when they returned to Earth.

There was no mass or power available in the LESS for an Inertial Measurement Unit to measure acceleration and tell the astronauts where they were, where they were going or how fast they would be getting there, or even for a radar altimeter to show altitude above the lunar surface.

In deep space this would have made navigation difficult, but the astronauts were close to the lunar surface, so other options were available. Most plans called for the astronauts to use landmarks on the lunar surface to control their heading while the pitch program took care of altitude and velocity. By keeping the landmark in the correct position relative to the LESS, they would know they were on the right course. Some designs included a graduated screen in front of the pilot showing relative angle to lunar landmarks.

Control

LESS attitude control varied widely among designs. Some used the main engine for attitude control by gimballing the engine nozzle to alter the direction of thrust. Others had multiple engines and could use relative throttling or pulse-rate to vary the thrust from the different engines and control attitude that way. A few used cold gas RCS thrusters where high-pressure gas (typically nitrogen) was released from nozzles to provide a small amount of thrust without endangering the crew with hot gas from a rocket thruster. Most provided the pilot with a simple control stick arrangement which would automatically adjust attitude based on pilot input.

The simplest designs had no attitude control system at all. Instead the pilot would stand during the flight, and simply lean backwards, forwards or side-to-side to move the center of gravity relative to the center of thrust of the fixed engine. As a result, the offset thrust would cause the LESS to rotate until the astronaut returned to a neutral position and the center of gravity was again aligned with the engine thrust. Ultimately, however, this was considered to be less desirable than hardware control, particularly as it imposed significant constraints on vehicle thrust level and inertia.

Long-range flyer

While the LESS was designed primarily as a 'lifeboat' for the LM crew, a simple rocket which could carry two astronauts would be beneficial in other areas too. The Lunar Roving Vehicle allowed the astronauts to travel fairly quickly over a few miles, but an improved version of the LESS could allow rapid travel over much longer distances on rocket thrust.

By adding fixed legs, increasing structural strength to support landing stresses, supporting engine throttling or using a cluster of RCS engines that could be pulsed, and adding a long-range radio relay, the LESS design could be extended to become a long-range flyer (LRF). With around 1600 pounds of propellant from the LM, the astronauts could travel forty to sixty nautical miles from the LM to explore a wider area around the landing site. This would, for example, allow reconnaissance trips to potential future landing sites, and the LRF could also be used for orbital flight to return the crew to the CSM in an emergency.

Lunar Flying Unit

There were also studies for a Lunar Flying Unit (LFU). Bell Aerosystems Company and North American Rockwell (NAR) were both awarded NASA contracts in 1969. Bell's LFU had the pilot standing, NAR's LFU had a seat for the pilot. [2] North American called it the Lunar Flying Vehicle, with a gross mass of 618 kg. [3]

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Apollo 8</span> First crewed space mission to orbit the Moon

Apollo 8 was the first crewed spacecraft to leave low Earth orbit and the first human spaceflight to reach the Moon. The crew orbited the Moon ten times without landing, and then departed safely back to Earth. These three astronauts—Frank Borman, James Lovell, and William Anders—were the first humans to witness and photograph the far side of the Moon and an Earthrise.

<span class="mw-page-title-main">Apollo program</span> 1961–1972 American crewed lunar exploration program

The Apollo program, also known as Project Apollo, was the third United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in preparing and landing the first humans on the Moon from 1968 to 1972. It was first conceived in 1960 during President Dwight D. Eisenhower's administration as a three-person spacecraft to follow the one-person Project Mercury, which put the first Americans in space. Apollo was later dedicated to President John F. Kennedy's national goal for the 1960s of "landing a man on the Moon and returning him safely to the Earth" in an address to Congress on May 25, 1961. It was the third US human spaceflight program to fly, preceded by the two-person Project Gemini conceived in 1961 to extend spaceflight capability in support of Apollo.

<span class="mw-page-title-main">Apollo 7</span> First crewed flight of the Apollo space program

Apollo 7 was the first crewed flight in NASA's Apollo program, and saw the resumption of human spaceflight by the agency after the fire that killed the three Apollo 1 astronauts during a launch rehearsal test on January 27, 1967. The Apollo 7 crew was commanded by Walter M. Schirra, with command module pilot Donn F. Eisele and lunar module pilot R. Walter Cunningham.

<span class="mw-page-title-main">Apollo 9</span> 3rd crewed mission of the Apollo space program

Apollo 9 was the third human spaceflight in NASA's Apollo program. Flown in low Earth orbit, it was the second crewed Apollo mission that the United States launched via a Saturn V rocket, and was the first flight of the full Apollo spacecraft: the command and service module (CSM) with the Lunar Module (LM). The mission was flown to qualify the LM for lunar orbit operations in preparation for the first Moon landing by demonstrating its descent and ascent propulsion systems, showing that its crew could fly it independently, then rendezvous and dock with the CSM again, as would be required for the first crewed lunar landing. Other objectives of the flight included firing the LM descent engine to propel the spacecraft stack as a backup mode, and use of the portable life support system backpack outside the LM cabin.

<span class="mw-page-title-main">Apollo 10</span> 4th crewed mission of the Apollo space program

Apollo 10 was a human spaceflight, the fourth crewed mission in the United States Apollo program, and the second to orbit the Moon. NASA described it as a "dress rehearsal" for the first Moon landing, and designated it an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing. While astronaut John Young remained in the Command and Service Module (CSM) orbiting the Moon, astronauts Thomas Stafford and Gene Cernan flew the Apollo Lunar Module (LM) to within 15.6 kilometers (8.4 nmi) of the lunar surface, the point at which powered descent for landing would begin on a landing mission, before rejoining Young in the CSM. After orbiting the Moon 31 times, Apollo 10 returned safely to Earth; its success enabled the first crewed landing during Apollo 11 two months later.

<span class="mw-page-title-main">Apollo 12</span> Second crewed mission to land on the Moon

Apollo 12 was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center, Florida. Commander Charles "Pete" Conrad and Lunar Module Pilot Alan L. Bean performed just over one day and seven hours of lunar surface activity while Command Module Pilot Richard F. Gordon remained in lunar orbit.

<span class="mw-page-title-main">Apollo 15</span> Fourth crewed mission to land on the Moon

Apollo 15 was the ninth crewed mission in the United States' Apollo program and the fourth to land on the Moon. It was the first J mission, with a longer stay on the Moon and a greater focus on science than earlier landings. Apollo 15 saw the first use of the Lunar Roving Vehicle.

<span class="mw-page-title-main">Apollo Lunar Module</span> NASA crewed Moon landing spacecraft (1969–1972)

The Apollo Lunar Module, originally designated the Lunar Excursion Module (LEM), was the lunar lander spacecraft that was flown between lunar orbit and the Moon's surface during the United States' Apollo program. It was the first crewed spacecraft to operate exclusively in the airless vacuum of space, and remains the only crewed vehicle to land anywhere beyond Earth.

<span class="mw-page-title-main">Apollo 5</span> First uncrewed test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload (including adapter and escape tower) that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Skylab Rescue</span> Unflown spaceflight contingency plan

The Skylab Rescue Mission was an unflown rescue mission, planned as a contingency in the event of astronauts being stranded aboard the American Skylab space station. If flown, it would have used a modified Apollo Command Module that could be launched with a crew of two and return a crew of five.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Lunar Landing Research Vehicle</span> Apollo human lunar landing training vehicle

The Bell Aerosystems Lunar Landing Research Vehicle was a Project Apollo era program to build a simulator for the Moon landings. The LLRVs were used by the FRC, now known as the NASA Armstrong Flight Research Center, at Edwards Air Force Base, California, to study and analyze piloting techniques needed to fly and land the Apollo Lunar Module in the Moon's low gravity environment.

<span class="mw-page-title-main">Reaction control system</span> Spacecraft thrusters used to provide attitude control and translation

A reaction control system (RCS) is a spacecraft system that uses thrusters to provide attitude control and translation. Alternatively, reaction wheels are used for attitude control. Use of diverted engine thrust to provide stable attitude control of a short-or-vertical takeoff and landing aircraft below conventional winged flight speeds, such as with the Harrier "jump jet", may also be referred to as a reaction control system.

The Apollo Applications Program (AAP) was created as early as 1966 by NASA headquarters to develop science-based human spaceflight missions using hardware developed for the Apollo program. AAP was the ultimate development of a number of official and unofficial Apollo follow-on projects studied at various NASA labs. However, the AAP's ambitious initial plans became an early casualty when the Johnson Administration declined to support it adequately, partly in order to implement its Great Society set of domestic programs while remaining within a $100 billion budget. Thus, Fiscal Year 1967 ultimately allocated $80 million to the AAP, compared to NASA's preliminary estimates of $450 million necessary to fund a full-scale AAP program for that year, with over $1 billion being required for FY 1968. The AAP eventually led to Skylab, which absorbed much of what had been developed under Apollo Applications.

<span class="mw-page-title-main">Pressure-fed engine</span> Rocket engine operation method

The pressure-fed engine is a class of rocket engine designs. A separate gas supply, usually helium, pressurizes the propellant tanks to force fuel and oxidizer to the combustion chamber. To maintain adequate flow, the tank pressures must exceed the combustion chamber pressure.

<span class="mw-page-title-main">Return of Apollo 15 to Earth</span> Overview of the last phase of NASAs fourth lunar landing mission

After the Apollo 15 LM Falcon lifted from the lunar surface on August 2, 1971, it rendezvoused and docked with the CSM Endeavour. After transferring across the lunar samples and other equipment, Falcon was jettisoned. It would fire its rocket engine to cause it to impact the lunar surface.

<span class="mw-page-title-main">Journey of Apollo 15 to the Moon</span> Overview from launch to lunar orbit insertion of Apollo 15.

Launched at 9:34:00 am EST on July 26, 1971, Apollo 15 took four days to reach the Moon. After spending two hours in orbit around the Earth, the S-IVB third stage of the Saturn V was reignited to send them to the Moon.

Several planned missions of the Apollo crewed Moon landing program of the 1960s and 1970s were canceled, for reasons which included changes in technical direction, the Apollo 1 fire, hardware delays, and budget limitations. After the landing by Apollo 12, Apollo 20, which would have been the final crewed mission to the Moon, was canceled to allow Skylab to launch as a "dry workshop". The next two missions, Apollos 18 and 19, were later canceled after the Apollo 13 incident and further budget cuts. Two Skylab missions also ended up being canceled. Two complete Saturn V rockets remained unused and were put on display in the United States.

<span class="mw-page-title-main">Transposition, docking, and extraction</span> Maneuver done by Apollo spacecraft

Transposition, docking, and extraction was a maneuver performed during Apollo lunar landing missions from 1969 to 1972, to withdraw the Apollo Lunar Module (LM) from its adapter housing which secured it to the Saturn V launch vehicle upper stage and protected it from the aerodynamic stresses of launch. The maneuver involved the command module pilot separating the Apollo Command and Service Module (CSM) from the adapter, turning the CSM around, and docking its nose to the Lunar Module, then pulling the combined spacecraft away from the upper stage. It was performed shortly after the trans-lunar injection maneuver that placed the Apollo spacecraft on a three-day trajectory to the Moon. The docking created a continuous, pressurized tunnel which permitted the astronauts to transfer internally between the CSM and the LM.

References