MOOSE

Last updated
Fig. 110 from Analysis and Design of Space Vehicle Flight Control Systems Operation MOOSE (figure 110).PNG
Fig. 110 from Analysis and Design of Space Vehicle Flight Control Systems
Fig. 111 from Analysis and Design of Space Vehicle Flight Control Systems Operation MOOSE (figure 111).PNG
Fig. 111 from Analysis and Design of Space Vehicle Flight Control Systems
Fig. 112 from Analysis and Design of Space Vehicle Flight Control Systems Operation MOOSE (figure 112).PNG
Fig. 112 from Analysis and Design of Space Vehicle Flight Control Systems

MOOSE, originally an acronym for Man Out Of Space Easiest but later changed to the more professional-sounding Manned Orbital Operations Safety Equipment, [1] was a proposed emergency "bail-out" system capable of bringing a single astronaut safely down from Earth orbit to the planet's surface. [2] [3] The design was proposed by General Electric in the early 1960s. The system was quite compact, weighing 200 lb (91 kg) and fitting inside a suitcase-sized container. It consisted of a small twin-nozzle rocket motor sufficient to deorbit the astronaut, a PET film bag 6 ft (1.8 m) long with a flexible 0.25 in (6.4 mm) ablative heat shield on the back, two pressurized canisters to fill it with polyurethane foam, a parachute, radio equipment and a survival kit. [4]

Contents

The astronaut would leave the vehicle in a space suit, climb inside the plastic bag, and then fill it with foam. [5] The bag had the shape of a blunt cone, with the astronaut embedded in its base facing the apex of the cone. The rocket pack would protrude from the bag and be used to slow the astronaut's orbital speed enough so that he would reenter Earth's atmosphere, and the foam-filled bag would act as insulation during the subsequent aerobraking. Finally, once the astronaut had descended to 30,000 ft (9.1 km) where air was sufficiently dense, the parachute would automatically deploy and slow the astronaut's fall to 17 mph (7.6 m/s). The foam heat shield would serve a final role as cushioning when the astronaut touched down and as a flotation device should they land on water. The radio beacon would guide rescuers.[ citation needed ]

General Electric performed preliminary testing on some of the components of the MOOSE system, including flying samples of heat shield material on a Mercury mission, inflating a foam-filled bag with a human subject embedded inside, and test-dropping dummies and a human subject [2] in MOOSE foam shields short distances. U.S. Air Force Capt. Joe Kittinger's historic freefall from a balloon at 103,000 ft (31,000 m) in August 1960 also helped demonstrate the feasibility of such extreme parachuting. However, the MOOSE system was nonetheless always intended as an extreme emergency measure when no other option for returning an astronaut to Earth existed; falling from orbit protected by nothing more than a spacesuit and a bag of foam was unlikely to ever become a particularly safe—or enticing—maneuver.

Neither NASA nor the U.S. Air Force expressed an interest in the MOOSE system, [6] and so by the end of the 1960s the program had been quietly shelved.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Human spaceflight</span> Spaceflight with a crew or passengers

Human spaceflight is spaceflight with a crew or passengers aboard a spacecraft, often with the spacecraft being operated directly by the onboard human crew. Spacecraft can also be remotely operated from ground stations on Earth, or autonomously, without any direct human involvement. People trained for spaceflight are called astronauts, cosmonauts (Russian), or taikonauts (Chinese); and non-professionals are referred to as spaceflight participants or spacefarers.

<span class="mw-page-title-main">Project Mercury</span> Initial American crewed spaceflight program (1958–1963)

Project Mercury was the first human spaceflight program of the United States, running from 1958 through 1963. An early highlight of the Space Race, its goal was to put a man into Earth orbit and return him safely, ideally before the Soviet Union. Taken over from the US Air Force by the newly created civilian space agency NASA, it conducted 20 uncrewed developmental flights, and six successful flights by astronauts. The program, which took its name from Roman mythology, cost $2.68 billion. The astronauts were collectively known as the "Mercury Seven", and each spacecraft was given a name ending with a "7" by its pilot.

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development.

<span class="mw-page-title-main">Atmospheric entry</span> Passage of an object through the gases of an atmosphere from outer space

Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris, or bolides; and controlled entry of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

<span class="mw-page-title-main">Shenzhou (spacecraft)</span> Class of crewed spacecraft from China

Shenzhou is a Chinese spacecraft developed for the nation's crewed space program. Its design was based on Russia's Soyuz, but larger and modernized, Shenzhou is a single-use vehicle composed of three modules. The descent module houses the crew during launch and reentry. The orbital module provides additional living space and storage during orbit but is jettisoned before reentry. The service module, responsible for propulsion and power, is also discarded prior to reentry. For added safety and aerodynamics, the spacecraft is encased within a fairing with a launch escape system during liftoff.

Space Shuttle <i>Columbia</i> disaster 2003 American spaceflight accident

On Saturday, February 1, 2003, Space Shuttle Columbia disintegrated as it re-entered the atmosphere over Texas and Louisiana, killing all seven astronauts on board. It was the second Space Shuttle mission to end in disaster, after the loss of Challenger and crew in 1986.

<span class="mw-page-title-main">Soyuz (spacecraft)</span> Series of spacecraft designed for the Soviet space programme

Soyuz is a series of spacecraft which has been in service since the 1960s, having made more than 140 flights. It was designed for the Soviet space program by the Korolev Design Bureau. The Soyuz succeeded the Voskhod spacecraft and was originally built as part of the Soviet crewed lunar programs. It is launched atop the similarly named Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.

<span class="mw-page-title-main">Mercury-Atlas 7</span> 1962 crewed spaceflight within NASAs Project Mercury

Mercury-Atlas 7, launched May 24, 1962, was the fourth crewed flight of Project Mercury. The spacecraft, named Aurora 7, was piloted by astronaut Scott Carpenter. He was the sixth human to fly in space. The mission used Mercury spacecraft No. 18 and Atlas launch vehicle No. 107-D.

<span class="mw-page-title-main">Reusable launch vehicle</span> Vehicles that can go to space and return

A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.

<span class="mw-page-title-main">Vostok (spacecraft)</span> First crewed spacecraft built by the Soviet Union

Vostok was a class of single-pilot crewed spacecraft built by the Soviet Union. The first human spaceflight was accomplished with Vostok 1 on April 12, 1961, by Soviet cosmonaut Yuri Gagarin.

<span class="mw-page-title-main">Boeing X-20 Dyna-Soar</span> Research spaceplane by Boeing

The Boeing X-20 Dyna-Soar was a United States Air Force (USAF) program to develop a spaceplane that could be used for a variety of military missions, including aerial reconnaissance, bombing, space rescue, satellite maintenance, and as a space interceptor to sabotage enemy satellites. The program ran from October 24, 1957, to December 10, 1963, cost US$660 million, and was cancelled just after spacecraft construction had begun.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Apollo command and service module</span> Component of the Apollo spacecraft

The Apollo command and service module (CSM) was one of two principal components of the United States Apollo spacecraft, used for the Apollo program, which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship, which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module, to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module, a cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection was severed and the service module was cast off and allowed to burn up in the atmosphere.

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit or sub-orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Ballute</span> Parachute-like braking device

The ballute is a parachute-like braking device optimized for use at high altitudes and supersonic velocities.

<span class="mw-page-title-main">Reentry capsule</span> Part of a space capsule

A reentry capsule is the portion of a space capsule which returns to Earth following a spaceflight. The shape is determined partly by aerodynamics; a capsule is aerodynamically stable falling blunt end first, which allows only the blunt end to require a heat shield for atmospheric entry. A crewed capsule contains the spacecraft's instrument panel, limited storage space, and seats for crew members. Because a capsule shape has little aerodynamic lift, the final descent is via parachute, either coming to rest on land, at sea, or by active capture by an aircraft. In contrast, the development of spaceplane reentry vehicles attempts to provide a more flexible reentry profile.

<span class="mw-page-title-main">Atmospheric Reentry Demonstrator</span>

The Advanced Reentry Demonstrator (ARD) was a European Space Agency (ESA) suborbital reentry vehicle. It was developed and operated for experimental purposes, specifically to validate the multiple reentry technologies integrated upon it and the vehicle's overall design, as well as to gain greater insight into the various phenomenon encountered during reentry.

Advanced Gemini was a series of proposals that would have extended the Gemini program by the addition of various missions, including crewed low Earth orbit, circumlunar and lunar landing missions. Gemini was the second crewed spaceflight program operated by NASA, and consisted of a two-seat spacecraft capable of maneuvering in orbit, docking with uncrewed spacecraft such as Agena Target Vehicles, and allowing the crew to perform tethered extra-vehicular activities.

<span class="mw-page-title-main">Mars atmospheric entry</span> Entry into the atmosphere of Mars

Mars atmospheric entry is the entry into the atmosphere of Mars. High velocity entry into Martian air creates a CO2-N2 plasma, as opposed to O2-N2 for Earth air. Mars entry is affected by the radiative effects of hot CO2 gas and Martian dust suspended in the air. Flight regimes for entry, descent, and landing systems include aerocapture, hypersonic, supersonic, and subsonic.

<span class="mw-page-title-main">Mengzhou (spacecraft)</span> Chinese deep-space crewed spacecraft in development

The Mengzhou, formerly known as the Next-Generation Crewed Spacecraft, is a type of reusable spacecraft developed and manufactured by China Aerospace Science and Technology Corporation (CASC). The prototype of the spacecraft underwent its first uncrewed test flight on 5 May 2020.

References

  1. MOOSE means Manned Orbital Operations Safety Equipment, All Acronyms. Retrieved 9 June 2021.
  2. 1 2 "MOOSE", Encyclopedia Astronautica. Retrieved 9 June 2021.
  3. Amy Shira Teitel (Oct. 12, 2017). "The Wearable Reentry Spacecraft Of Yesteryear", Discover Magazine . Retrieved 9 June 2021.
  4. Gravity: Forgotten Space Escape Pod Could Bring Sandra Bullock Home Safe, GE.com, March 01, 2014. Retrieved 9 June 2021.
  5. "How to survive a spaceship disaster", The Week, Jan. 8, 2015. Retrieved 9 June 2021.
  6. "Free Falling", New Scientist, 29 July 2006. Retrieved 9 June 2021.