Charged Particle Lunar Environment Experiment

Last updated
A close-up view of the CPLEE on the Moon's surface ALSEP AS14-67-9364.jpg
A close-up view of the CPLEE on the Moon's surface
The CPLEE with the ALSEP central station in the background AS14-67-9365 (21471630610).jpg
The CPLEE with the ALSEP central station in the background

The Charged Particle Lunar Environment Experiment (CPLEE), placed on the lunar surface by the Apollo 14 mission as part of the Apollo Lunar Surface Experiments Package (ALSEP), was designed to measure the energy spectra of low-energy charged particles striking the lunar surface. It measured the fluxes of electrons and ions with energies from 40 eV to 20 keV. The primary purpose of the experiment was to examine plasma particles originating from the Sun and the low-energy particle flux in the Earth's magnetic tail.

Contents

Design

The CPLEE had a mass of 2.7 kg (6.0 lb), a stowed volume of 2540 cubic cm, and used 3.0 W power normally and 6.0 W at night when the survival heater was on. The main part of the instrumentation consisted of two electrostatic analyzers. One of these (analyzer A) pointed toward local lunar vertical, and the other (analyzer B) to a point 60 deg from vertical toward lunar west. Both detectors had fields of view of 4 x 20 degrees; for analyzer A the long axis of the field of view was oriented N-S, and for analyzer B, E-W. As a first approximation, both detectors could be considered to point in the ecliptic plane. Each analyzer consisted of a set of direction-defining slits, deflection plates, five small-aperture (1 mm nominal) C-shaped channel electron multipliers, one large-aperture (8 mm nominal) helical channel electron multiplier and 6 accumulators. For a given voltage applied to the deflection plates, the five small-aperture multipliers were arranged to count particles of one polarity with differing energies, while the large-aperture multiplier simultaneously made a wide-band measurement of particles of the opposite polarity. During each 19.2-s interval in the automatic mode of experiment operation, deflection voltages of zero (twice, for background and calibration) and plus and minus 35, 350, and 3500 were applied to the deflection plates for 2.4 s at each voltage. Each analyzer would make measurements for 1.2 s and transmit while the other analyzer was operating. The little-used manual mode permitted the continuous application of a single deflection voltage, thus increasing temporal resolution for particles in a limited portion of the spectrum. Useful data obtained during each 19.2-s interval (automatic mode) where, for each analyzer, 1.2-s accumulated counts of electrons and ions in 18 energy windows between 40 eV and 20 keV. The windows utilizing all 6 detectors at 35 V are centered roughly at 40, 50, 65, 70, 95, and 200 eV, the windows at 350 V are 10x and at 3500 V are 100x these values. A dust cover with a 63Ni radioactive source on the underside over each aperture for calibration protected the instrument.

The instrument was designed by Australian Professor Brian J. O'Brien, who was a professor in the Department of Space Science at Rice University. After he left Rice University in 1968, his postdoctoral student David L. Reasoner (PhD., 1968) took over the job of PI of the instrument and its data analysis. Two Rice University students earned PhD's analyzing CPLEE data: Frederick J. Rich (PhD, 1973) and Patricia H. Reiff (PhD, 1975).

Apollo 14 ALSEP layout Apollo 14 ALSEP.jpg
Apollo 14 ALSEP layout

Timelines

The ALSEP central station was located at 3°38′38″S17°28′39″W / 3.6440°S 17.4775°W / -3.6440; -17.4775 (Apollo 14 ALSEP) . The charged particle lunar environment experiment was deployed approximately 3 meters northeast of the central station. Leveling to 1.7 degrees, tipped to the east, was accomplished with a bubble level and east-west alignment to within 1 degree with a Sun compass. The instrument was deployed at approximately 18:00 UT on 5 February 1971 and commanded on at 19:00 UT for 5 minutes of functional tests. A checkout procedure was conducted on 6 February from 4:00 to 6:10 UT. Following LM ascent on 6 February at 18:49 UT the dust cover was commanded to be removed at 19:30 UT.

The experiment worked normally from deployment until April 8, 1971, when the power supply for the analyzer pointing away from lunar vertical (analyzer B) failed. The other analyzer continued to function normally until June 6, 1971, when a partial failure of the power supply occurred. Operation of this analyzer was intermittent for the rest of 1971. During most of 1972, operation was continuous during lunar night and intermittent during lunar day because high temperatures caused a low voltage condition in the power supply. From December 1972 to February 1973 operation was continuous, after which time the voltage problems occurred again. The Apollo 14 central station signal was lost on 1 March 1975 and reacquired on 5 March. Loss and reacquisition of signal happened sporadically until termination of the ALSEP experiment. Loss-reacquisition occurred in 1976 on 18 January – 19 February, 17 March – 20 May, 8 June – 10 June, 9 October – 12 November and in 1977 on 30 July – 4 August. The CPLEE experiment was in standby mode when the ALSEP stations were turned off on 30 September 1977.

See also

Related Research Articles

<span class="mw-page-title-main">Explorer 35</span> NASA satellite of the Explorer program

Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. It was designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.

<span class="mw-page-title-main">Explorer 54</span> NASA satellite of the Explorer program

Explorer 54, also called as AE-D, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 6 October 1975 from Vandenberg Air Force Base board a Thor-Delta 2910 launch vehicle.

<span class="mw-page-title-main">Explorer 18</span> NASA satellite of the Explorer program

Explorer 18, also called IMP-A, IMP-1, Interplanetary Monitoring Platform-1 and S-74, was a NASA satellite launched as part of the Explorer program. Explorer 18 was launched on 27 November 1963 from Cape Canaveral Air Force Station (CCAFS), Florida, with a Thor-Delta C launch vehicle. Explorer 18 was the first satellite of the Interplanetary Monitoring Platform (IMP). Explorer 21 (IMP-B) launched in October 1964 and Explorer 28 (IMP-C) launched in May 1965 also used the same general spacecraft design.

<span class="mw-page-title-main">Explorer 14</span> NASA satellite of the Explorer program

Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">ISEE-2</span>

The ISEE-2 was an Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Apollo 14 Passive Seismic Experiment</span>

The Apollo 14 Passive Seismic Experiment (PSE) was placed on the lunar surface on February 5, 1971, as part of the Apollo 14 ALSEP package. The PSE was designed to detect vibrations and tilting of the lunar surface and measure changes in gravity at the instrument location. The vibrations are due to internal seismic sources (moonquakes) and external. The primary objective of the experiment was to use these data to determine the internal structure, physical state, and tectonic activity of the Moon. The secondary objectives were to determine the number and mass of meteoroids that strike the Moon and record tidal deformations of the lunar surface.

<span class="mw-page-title-main">Explorer 12</span> NASA satellite of the Explorer program

Explorer 12, also called EPE-A or Energetic Particles Explorer-A and as S3), was a NASA satellite built to measure the solar wind, cosmic rays, and the Earth's magnetic field. It was the first of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 16 August 1961, aboard a Thor-Delta launch vehicle. It ceased transmitting on 6 December 1961 due to power failure.

<span class="mw-page-title-main">Explorer 34</span> NASA satellite of the Explorer program

Explorer 34, was a NASA satellite launched as part of Explorer program. Explorer 34 as launched on 24 May 1967 from Vandenberg Air Force Base, California, with Thor-Delta E1 launch vehicle. Explorer 34 was the fifth satellite launched as part of the Interplanetary Monitoring Platform program, but was known as "IMP-4" because the preceding launch was more specifically part of the "Anchored IMP" sub-program. The spacecraft was put into space between the launches of Explorer 33 in 1966 and Explorer 35 in July 1967, but the next satellite to use Explorer 34's general design was Explorer 41, which flew in 1969.

<span class="mw-page-title-main">Explorer 41</span> NASA satellite of the Explorer program

Explorer 41, also called as IMP-G and IMP-5, was a NASA satellite launched as part of Explorer program. Explorer 41 as launched on 21 June 1969 on Vandenberg AFB, California, with a Thor-Delta E1 launch vehicle. Explorer 41 was the seventh satellite launched as part of the overall Interplanetary Monitoring Platform series, though it received the post-launch designation "IMP-5" because two previous flights had used the "AIMP" designation instead. It was preceded by the second of those flights, Explorer 35, launched in July 1967. Its predecessor in the strict IMP series of launches was Explorer 34, launched in May 1967, which shared a similar design to Explorer 41. The next launch was of an IMP satellite was Explorer 43 in 1971.

<span class="mw-page-title-main">Explorer 43</span> NASA satellite of the Explorer program

Explorer 43, also called as IMP-I and IMP-6, was a NASA satellite launched as part of Explorer program. Explorer 43 was launched on 13 March 1971 from Cape Canaveral Air Force Station (CCAFS), with a Thor-Delta M6 launch vehicle. Explorer 43 was the sixth satellite of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Explorer 45</span> NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

<span class="mw-page-title-main">Explorer 47</span> NASA satellite of the Explorer program

Explorer 47, was a NASA satellite launched as part of Explorer program. Explorer 47 was launched on 23 September 1972 from Cape Canaveral, Florida, with a Thor-Delta 1604. Explorer 47 was the ninth overall launch of the Interplanetary Monitoring Platform series, but received the launch designation "IMP-7" because two previous "Anchored IMP" flights had used "AIMP" instead.

<span class="mw-page-title-main">Explorer 50</span> NASA satellite of the Explorer program

Explorer 50, also known as IMP-J or IMP-8, was a NASA satellite launched to study the magnetosphere. It was the eighth and last in a series of the Interplanetary Monitoring Platform.

<span class="mw-page-title-main">Explorer 51</span> NASA satellite of the Explorer program

Explorer 51, also called as AE-C, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 16 December 1973, at 06:18:00 UTC, from Vandenberg board a Delta 1900 launch vehicle.

<span class="mw-page-title-main">Explorer 55</span> NASA satellite of the Explorer program

Explorer 55, also called as AE-E, was a NASA scientific satellite belonging to series Atmosphere Explorer, being launched on 20 November 1975 from Cape Canaveral Air Force Station (CCAFS) board a Thor-Delta 2910 launch vehicle.

<span class="mw-page-title-main">Dynamics Explorer 1</span> NASA satellite of the Explorer program

Dynamics Explorer 1 was a NASA high-altitude mission, launched on 3 August 1981, and terminated on 28 February 1991. It consisted of two satellites, DE-1 and DE-2, whose purpose was to investigate the interactions between plasmas in the magnetosphere and those in the ionosphere. The two satellites were launched together into polar coplanar orbits, which allowed them to simultaneously observe the upper and lower parts of the atmosphere.

<span class="mw-page-title-main">Cold Cathode Gauge Experiment</span> Part of the Apollo Lunar Surface Experiments Package (ALSEP)

The Cold Cathode Gauge Experiment, also known as the Lunar Atmosphere Detector, was a scientific package that flew on board Apollo 12, Apollo 13, Apollo 14, and Apollo 15. The goal of the experiment was to measure the density of the Moon's tenuous atmosphere, but not its composition.

The Lunar Atmospheric Composition Experiment (LACE) was a miniature magnetic deflection mass spectrometer. The experiment's aim was to study the composition and variations of the lunar atmosphere. The only deployment of LACE was as part of the Apollo Lunar Surface Experiments Package (ALSEP) on Apollo 17 within the Taurus–Littrow valley.

<span class="mw-page-title-main">Lunar Ejecta and Meteorites Experiment</span> 1972–1976 lunar science experiment

The Lunar Ejecta and Meteorites Experiment (LEAM) was a lunar science experiment that flew to the Moon on board Apollo 17 in 1972. It collected information on dust particles produced as a result of meteoroid impacts on the surface of the Moon.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .

Further reading