Country of origin | France |
---|---|
First flight | 24 December 1979 |
Designer | Snecma |
Manufacturer | Snecma |
Application | Upper stage engine |
Predecessor | HM4 |
Successor | Vinci |
Status | Retired |
Liquid-fuel engine | |
Propellant | LOX / LH2 |
Mixture ratio | 5:1 |
Cycle | Gas-generator |
Configuration | |
Chamber | 1 |
Nozzle ratio | 83.1:1 |
Performance | |
Thrust, vacuum | 62.2 kN (13,980 lbf) [1] |
Chamber pressure | 3.7 MPa (37 bar) |
Specific impulse, vacuum | 444.6 s (4.36 km/s) |
Dimensions | |
Length | 2.01 m (6 ft 7 in) |
Diameter | 0.992 m (3 ft 3.1 in) |
Dry mass | 165 kg (364 lb) |
Used in | |
References | |
References | [1] [2] [3] |
The HM7B was a European cryogenic upper stage rocket engine used on the vehicles in the Ariane rocket family. [3] It was replaced by Vinci, which acts as the new upper stage engine on Ariane 6. [4] Nearly 300 engines have been produced to date. [3]
The development of HM7 engine begun in 1973 on a base of HM4 rocket engine. It was designed to power a third stage of newly constructed Ariane 1, the first launch system for European Space Agency. Maiden flight took place on 24 December 1979 successfully placing CAT-1 satellite on the orbit. With the later introduction of Ariane 2 and Ariane 3 it became necessary to improve the performance of the upper stage engine. This was achieved by extending the nozzle length and increasing the chamber pressure from 30 to 35 bar, increasing the engine's specific impulse and resulting in a nominal burn time increase from 570 to 735 seconds. Qualification tests were completed in 1983 and this upgraded variant was designated HM7B. It was also used on the Ariane 4 vehicle's upper stage where the burn time was further increased to 780 seconds, and since 12 February 2005 it's also used on the upper stage of Ariane 5 ECA. [2]
The HM7B is a regeneratively cooled gas generator rocket engine fed with liquid oxygen and liquid hydrogen. It has no restart capability: the engine is continuously fired for 950 seconds in its Ariane 5 version (780 s in the Ariane 4). It provides 62.7 kN of thrust with a specific impulse of 444.6 s. [1] The engine's chamber pressure is 3.5 MPa. [2]
A rocket is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.
A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to the ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.
Soyuz is a family of expendable Russian and Soviet carrier rockets developed by OKB-1 and manufactured by Progress Rocket Space Centre in Samara, Russia. The Soyuz is the rocket with the most launches in the history of spaceflight.
A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.
A multistage rocket or step rocket is a launch vehicle that uses two or more rocket stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched.
A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.
The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lbf) of thrust per engine in vacuum. Three RL10 versions are in production for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV. Three more versions are in development for the Exploration Upper Stage of the Space Launch System and the Centaur V of the Vulcan rocket.
Geosynchronous Satellite Launch Vehicle (GSLV) is a class of expendable launch systems operated by the Indian Space Research Organisation (ISRO). GSLV has been used in fifteen launches since 2001.
The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.
Vulcain is a family of European first stage rocket engines for Ariane 5 and Ariane 6. Its development began in 1988 and the first flight was completed in 1996. The updated version of the engine, Vulcain 2, was first successfully flown in 2005. Both members of the family use liquid oxygen/liquid hydrogen cryogenic fuel. The new version for Ariane 6 is called Vulcain 2.1.
Vinci is a restartable, cryogenic, liquid-propellant rocket engine that powers the upper stage of Ariane 6. While development began in 1998 for the planned Ariane 5ME upgrade, funding for that programme shifted in 2014 to prioritize the development of Ariane 6, making Vinci the engine for the new launcher.
The LE-5 liquid rocket engine and its derivative models were developed in Japan to meet the need for an upper stage propulsion system for the H-I and H-II series of launch vehicles. It is a bipropellant design, using LH2 and LOX. Primary design and production work was carried out by Mitsubishi Heavy Industries. In terms of liquid rockets, it is a fairly small engine, both in size and thrust output, being in the 89 kN (20,000 lbf) and the more recent models the 130 kN (30,000 lbf) thrust class. The motor is capable of multiple restarts, due to a spark ignition system as opposed to the single use pyrotechnic or hypergolic igniters commonly used on some contemporary engines. Though rated for up to 16 starts and 40+ minutes of firing time, on the H-II the engine is considered expendable, being used for one flight and jettisoned. It is sometimes started only once for a nine-minute burn, but in missions to GTO the engine is often fired a second time to inject the payload into the higher orbit after a temporary low Earth orbit has been established.
The RL60 was a planned liquid-fuel cryogenic rocket engine designed in the United States by Pratt & Whitney, burning cryogenic liquid hydrogen and liquid oxygen propellants. The engine runs on an expander cycle, running the turbopumps with waste heat absorbed from the main combustion process. This high-efficiency, waste heat based combustion cycle combined with the high-performance liquid hydrogen fuel enables the engine to reach a very high specific impulse of up to 465 seconds in a vacuum. The engine was planned to be a more capable successor to the Aerojet Rocketdyne RL10, providing improved performance and efficiency while maintaining the installation envelope of the RL10.
The RD-0124 is a rocket engine burning liquid oxygen and kerosene in an oxygen-rich staged combustion cycle, developed by the Chemical Automatics Design Bureau in Voronezh. RD-0124 engines are used on the Soyuz-2.1b and Soyuz-2-1v. A variant of the engine, the RD-0124A, is used on the Angara rocket family's URM-2 upper stage.
A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.
The RD-0146 (РД-0146) is a liquid-fuel cryogenic rocket engine developed by KBKhA Kosberg in Voronezh, Russia.
Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
Ariane 6 is a European expendable launch system operated by Arianespace and developed and produced by ArianeGroup on behalf of the European Space Agency (ESA). It replaces Ariane 5, as part of the Ariane launch vehicle family.
The HM4 was a first non-American cryogenic rocket engine. Developed in France between 1967 and 1969 it never flew into space, was used purely as a testbed for new technologies. Technologies developed in HM4 become a base for HM7 engine used in Ariane.