Vinci (rocket engine)

Last updated
Vinci
DaVinci-Oberstufentriebwerk - Vinci rocket engine (14050083338).jpg
Country of originFlag of France.svg  France, Flag of Europe.svg  European Union
Designer ArianeGroup
Manufacturer ArianeGroup
ApplicationUpper stage liquid rocket booster
Predecessor HM-7B
StatusUnder development
Liquid-fuel engine
Propellant LOX / LH2
Mixture ratio6.1
Cycle Expander cycle
Configuration
Chamber1
Nozzle ratio240
Performance
Thrust, vacuum180  kN (40,470  lbf)
Chamber pressure 6.08 MPa (60.8 bar)
Specific impulse, vacuum457 s (4.48 km/s) [1]
Dimensions
Length3,22 m
Diameter1.84 m
Dry weight
  • approx. 550 kg
  • 160 kg, excluding nozzle

Vinci is a European Space Agency cryogenic liquid rocket engine under development as of 2020. It is designed to power the new upper stage of Ariane 6.

Contents

Overview

Vinci is an expander cycle rocket engine fed with liquid hydrogen and liquid oxygen. Its biggest improvement from its predecessor, the HM7B (which powers the ESC-A), is the capability of restarting up to five times. It is also the first European expander cycle engine, removing the need for a gas generator to drive the fuel and oxidizer pumps. The engine features a carbon ceramic extendable nozzle in order to have a large, 2.15 m diameter nozzle extension with minimum length: the retracted nozzle part is deployed only after the upper stage separates from the rest of the rocket; after extension, the engine's overall length increases from 2.3 m to 4.2 m.

Development

Although the ESC-B development was put on hold in 2003, the Vinci project was not cancelled: at a lower pace, the engine is still being developed. On 22 December 2006, Snecma announced a new ESA contract for Vinci rocket engine long-duration and re-ignition testing.

In late April 2010 the German Aerospace Center DLR announced the start of a six-month test campaign for the Vinci engine at its Lampoldshausen facility. [2] The first successful test firing of this campaign took place on 27 May 2010. [3] A video of a test was released in 2016. [4]

In 2014, NASA was interested with the idea of using the Vinci instead of the RL10 for an upper stage of Space Launch System. The Vinci offers the same specific impulse at the same mass but with 64% greater thrust, which would allow for a reduction of one or two of the four second stage engines for the same performance, while the cost would be lower. [5] [6]

In July 2017, Ariane Group reported that the first flight models of the combustion chamber had entered production. [7]

As of 2023, the first flight of the Ariane 6 rocket with Vinci is planned for June 2024. [8]

See also

Comparable engines

Related Research Articles

<span class="mw-page-title-main">Ariane 5</span> European heavy-lift space launch vehicle (1996–2023)

Ariane 5 is a retired European heavy-lift space launch vehicle developed and operated by Arianespace for the European Space Agency (ESA). It was launched from the Centre Spatial Guyanais (CSG) in French Guiana. It was used to deliver payloads into geostationary transfer orbit (GTO), low Earth orbit (LEO) or further into space. The launch vehicle had a streak of 82 consecutive successful launches between 9 April 2003 and 12 December 2017. Since 2014, Ariane 6, a direct successor system, is in development.

<span class="mw-page-title-main">Expander cycle</span> Rocket engine operation method

The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned.

<span class="mw-page-title-main">Vega (rocket)</span> European Space Agency launch system

Vega is an expendable launch system in use by Arianespace jointly developed by the Italian Space Agency (ASI) and the European Space Agency (ESA). Development began in 1998 and the first launch took place from the Centre Spatial Guyanais on 13 February 2012.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Gaseous propellants may also be used but are not common because of their low density and difficulty with common pumping methods. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. The rocket propellants are usually pumped into the combustion chamber with a lightweight centrifugal turbopump, although some aerospace companies have found ways to use electric pumps with batteries, allowing the propellants to be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

<span class="mw-page-title-main">RS-25</span> Space Shuttle and SLS main engine

The Aerojet Rocketdyne RS-25, also known as the Space Shuttle Main Engine (SSME), is a liquid-fuel cryogenic rocket engine that was used on NASA's Space Shuttle and is currently used on the Space Launch System (SLS).

<span class="mw-page-title-main">RL10</span> Liquid fuel cryogenic rocket engine, typically used on rocket upper stages

The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lbf) of thrust per engine in vacuum. Three RL10 versions are in production for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV. Three more versions are in development for the Exploration Upper Stage of the Space Launch System and the Centaur V of the Vulcan rocket.

<span class="mw-page-title-main">Gas-generator cycle</span> Rocket engine operation method

The gas-generator cycle, also called open cycle, is one of the most commonly used power cycles in bipropellant liquid rocket engines. Part of the unburned propellant is burned in a gas generator and the resulting hot gas is used to power the propellant pumps before being exhausted overboard, and lost. Because of this loss, this type of engine is termed open cycle.

<span class="mw-page-title-main">J-2X</span>

The J-2X is a liquid-fueled cryogenic rocket engine that was planned for use on the Ares rockets of NASA's Constellation program, and later the Space Launch System. Built in the United States by Aerojet Rocketdyne (formerly, Pratt & Whitney Rocketdyne), the J-2X burns cryogenic liquid hydrogen and liquid oxygen propellants, with each engine producing 1,307 kN (294,000 lbf) of thrust in vacuum at a specific impulse (Isp) of 448 seconds (4.39 km/s). The engine's mass is approximately 2,470 kg (5,450 Lb), significantly heavier than its predecessors.

<span class="mw-page-title-main">Vulcain (rocket engine)</span> French rocket engine

Vulcain is a family of European first stage rocket engines for Ariane 5 and the future Ariane 6. Its development began in 1988 and the first flight was completed in 1996. The updated version of the engine, Vulcain 2, was first successfully flown in 2005. Both members of the family use liquid oxygen/liquid hydrogen cryogenic fuel. The new version under development for Ariane 6 will be called Vulcain 2.1.

<span class="mw-page-title-main">HM7B</span> European rocket engine

The HM7B was a European cryogenic upper stage rocket engine used on the vehicles in the Ariane rocket family. It will be replaced by Vinci, which will act as the new upper stage engine on Ariane 6. Nearly 300 engines have been produced to date.

The Future Launchers Preparatory Programme (FLPP) is a technology development and maturation programme of the European Space Agency (ESA). It develops technologies for the application in future European launch vehicles (launchers) and in upgrades to existing launch vehicles. By this it helps to reduce time, risk and cost of launcher development programmes.
Started in 2004, the programmes initial objective was to develop technologies for the Next Generation Launcher (NGL) to follow Ariane 5. With the inception of the Ariane 6 project, the focus of FLPP was shifted to a general development of new technologies for European launchers.
FLPP develops and matures technologies that are deemed promising for future application but currently do not have a sufficiently high technology readiness level (TRL) to allow a clear assessment of their performance and associated risk. Those technologies typically have an initial TRL of 3 or lower. The objective is to raise the TRL up to about 6, thus creating solutions which are proven under relevant conditions and can be integrated into development programmes with reduced cost and limited risk.

The RL60 was a planned liquid-fuel cryogenic rocket engine designed in the United States by Pratt & Whitney, burning cryogenic liquid hydrogen and liquid oxygen propellants. The engine runs on an expander cycle, running the turbopumps with waste heat absorbed from the main combustion process. This high-efficiency, waste heat based combustion cycle combined with the high-performance liquid hydrogen fuel enables the engine to reach a very high specific impulse of up to 465 seconds in a vacuum. The engine was planned to be a more capable successor to the Aerojet Rocketdyne RL10, providing improved performance and efficiency while maintaining the installation envelope of the RL10.

<span class="mw-page-title-main">Cryogenic rocket engine</span> Type of rocket engine which uses liquid fuel stored at very low temperatures

A cryogenic rocket engine is a rocket engine that uses a cryogenic fuel and oxidizer; that is, both its fuel and oxidizer are gases which have been liquefied and are stored at very low temperatures. These highly efficient engines were first flown on the US Atlas-Centaur and were one of the main factors of NASA's success in reaching the Moon by the Saturn V rocket.

<span class="mw-page-title-main">RD-0146</span> Russian rocket engine

The RD-0146 (РД-0146) is a liquid-fuel cryogenic rocket engine developed by KBKhA Kosberg in Voronezh, Russia.

<span class="mw-page-title-main">Delta Cryogenic Second Stage</span> Japanese-American Delta/SLS rocket part

The Delta Cryogenic Second Stage (DCSS) is a family of cryogenic rocket stages used on the Delta III and Delta IV rockets, and on the Space Launch System Block 1. The stage consists of a cylindrical liquid hydrogen (LH2) tank structurally separated from an oblate spheroid liquid oxygen (LOX) tank. The LH2 tank cylinder carries payload launch loads, while the LOX tank and engine are suspended below within the rocket's inter-stage. The stage is powered by a single Aerojet Rocketdyne-Pratt & Whitney RL10B-2 engine, which features an extendable carbon-carbon nozzle to improve specific impulse.

<span class="mw-page-title-main">Ariane 6</span> European space launch vehicle under development

Ariane 6 is a European expendable launch system under development since the early 2010s by ArianeGroup on behalf of the European Space Agency (ESA). It replaces the Ariane 5, as part of the Ariane launch vehicle family. The stated motivation for Ariane 6 was to halve the cost compared to Ariane 5, and increase the capacity for the number of launches per year.

<span class="mw-page-title-main">Exploration Upper Stage</span> Rocket stage in NASAs Space Launch System

The Exploration Upper Stage (EUS) is a rocket stage under development that will be used for future flights of NASA's Space Launch System (SLS). Used on SLS Block 1B and Block 2, it will replace the SLS Block 1's Interim Cryogenic Propulsion Stage. The stage will be powered by four RL10C-3 engines burning liquid oxygen and liquid hydrogen to produce a total thrust of 433.1 kN (97,360 lbf). The EUS is expected to first fly on Artemis 4 in 2028.

<span class="mw-page-title-main">Liquid fly-back booster</span> Launch vehicle study

Liquid Fly-back Booster (LFBB) was a German Aerospace Center's (DLR's) project concept to develop a liquid rocket booster capable of reuse for Ariane 1 in order to significantly reduce the high cost of space transportation and increase environmental friendliness. lrb would replace the existing liquid rocket boosters, providing main thrust during the countdown. Once separated, two winged boosters would perform an atmospheric entry, go back autonomously to the French Guiana, and land horizontally on the airport like an aeroplane.

The Institute of Space Propulsion in Lampoldshausen is one of the eight research centers of the German Aerospace Center (DLR).

The MARC-60, also known as MB-60, MB-XX, and RS-73, is a liquid-fuel cryogenic rocket engine designed as a collaborative effort by Japan's Mitsubishi Heavy Industries and US' Aerojet Rocketdyne. The engine burns cryogenic liquid oxygen and liquid hydrogen in an open expander cycle, driving the turbopumps with waste heat from the main combustion process.

References

  1. "Vinci® engine" (PDF). Ariane. Retrieved 10 October 2022.
  2. "Vinci – tests on the high-thrust, cryogenic, restartable upper stage engine for Ariane 5 gather pace". Lampoldshausen: German Aerospace Center. 28 April 2010. Archived from the original on 15 March 2018. Retrieved 29 January 2017.
  3. "First test of Vinci M3 engine a success!" (Press release). Evry: Safran Aircraft Engines. 4 October 2010. Retrieved 29 January 2017.
  4. "Ariane 6 Vinci engine is tested". 2016-05-17. Retrieved 2017-03-13.
  5. Todd, David (3 June 2013). "SLS design may ditch J-2X upper stage engine for four RL-10 engines". Seradata Space Intelligence. Archived from the original on 27 December 2016. Retrieved 29 January 2017.
  6. Todd, David (7 November 2014). "Next Steps for SLS: Europe's Vinci is a contender for Exploration Upper-Stage Engine". Seradata Space Intelligence. Archived from the original on 27 December 2016. Retrieved 29 January 2017.
  7. "ArianeGroup starts production of the first flight model for the VINCI engine combustion chamber intended for the Ariane 6 upper stage" . Retrieved 28 July 2017.
  8. "Ariane 6". ESA. November 30, 2023. Archived from the original on 2023-11-30. Retrieved 2024-01-09.