Combustion instabilities are physical phenomena occurring in a reacting flow (e.g., a flame) in which some perturbations, even very small ones, grow and then become large enough to alter the features of the flow in some particular way. [1] [2] [3]
In many practical cases, the appearance of combustion instabilities is undesirable. For instance, thermoacoustic instabilities are a major hazard to gas turbines and rocket engines. [1] Moreover, flame blowoff of an aero-gas-turbine engine in mid-flight is clearly dangerous (see flameout).
Because of these hazards, the engineering design process of engines involves the determination of a stability map (see figure). This process identifies a combustion-instability region and attempts to either eliminate this region or moved the operating region away from it. This is a very costly iterative process. For example, the numerous tests required to develop rocket engines [4] are largely in part due to the need to eliminate or reduce the impact of thermoacoustic combustion instabilities.
In applications directed towards engines, combustion instability has been classified into three categories, not entirely distinct. This classification was first introduced by Marcel Barrère and Forman A. Williams in 1969. [5] The three categories are [6]
In contrast with thermoacoustic combustion instabilities, where the role of acoustics is dominant, intrinsic flame instabilities refer to instabilities produced by differential and preferential diffusion, thermal expansion, buoyancy, and heat losses. Examples of these instabilities include the Darrieus–Landau instability, the Rayleigh-Taylor instability, and diffusive-thermal instability.
In this type of instabilities the perturbations that grow and alter the features of the flow are of an acoustics nature. Their associated pressure oscillations can have well defined frequencies with amplitudes high enough to pose a serious hazard to combustion systems. [1] For example, in rocket engines, such as the Rocketdyne F-1 rocket engine [7] in the Saturn V program, instabilities can lead to massive damage of the combustion chamber and surrounding components (see rocket engines). Furthermore, instabilities are known to destroy gas-turbine-engine components during testing. [8] They represent a hazard to any type of combustion system.
Thermoacoustic combustion instabilities can be explained by distinguishing the following physical processes:
The simplest example of a thermoacoustic combustion instability is perhaps that happening in a horizontal Rijke tube (see also thermoacoustics): Consider the flow through a horizontal tube open at both ends, in which a flat flame sits at a distance of one-quarter the tube length from the leftmost end. In a similar way to an organ pipe, acoustic waves travel up and down the tube producing a particular pattern of standing waves. Such a pattern also forms in actual combustors, but takes a more complex form. [9] The acoustic waves perturb the flame. In turn, the flame affects the acoustics. This feedback between the acoustic waves in the combustor and the heat-release fluctuations from the flame is a hallmark of thermoacoustic combustion instabilities. It is typically represented with a block diagram (see figure). Under some conditions, the perturbations will grow and then saturate, producing a particular noise. In fact, it is said that the flame of a Rijke tube sings.
The conditions under which perturbations will grow are given by Rayleigh's (John William Strutt, 3rd Baron Rayleigh) criterion: [10] Thermoacoustic combustion instabilities will occur if the volume integral of the correlation of pressure and heat-release fluctuations over the whole tube is larger than zero (see also thermoacoustics). In other words, instabilities will happen if heat-release fluctuations are coupled with acoustical pressure fluctuations in space-time (see figure). However, this condition is not sufficient for the instability to occur.
Another necessary condition for the establishment of a combustion instability is that the driving of the instability from the above coupling must be larger than the sum of the acoustic losses. [11] These losses happen through the tube's boundaries, or are due to viscous dissipation.
Combining the above two conditions, and for simplicity assuming here small fluctuations and an inviscid flow, leads to the extended Rayleigh's criterion. Mathematically, this criterion is given by the next inequality:
Here p' represents pressure fluctuations, q' heat release fluctuations, velocity fluctuations, T is a long enough time interval, V denotes volume, S surface, and is a normal to the surface boundaries. The left hand side denotes the coupling between heat-release fluctuations and acoustic pressure fluctuations, and the right hand side represents the loss of acoustic energy at the tube boundaries.
Graphically, for a particular combustor, the extended Rayleigh's criterion is represented in the figure on the right as a function of frequency. The left hand side of the above inequality is called gains, and the right hand side losses. Notice that there is a region where the gains exceeds the losses. In other words, the above inequality is satisfied. Furthermore, note that in this region the response of the combustor to acoustic fluctuations peaks. Thus, the likelihood of a combustion instability in this region is high, making it a region to avoid in the operation of the combustor. This graphical representation of a hypothetical combustor allows to group three methods to prevent combustion instabilities: [1] increase the losses; reduce the gains; or move the combustor's peak response away from the region where gains exceed losses.
To clarify further the role of the coupling between heat-release fluctuations and pressure fluctuations in producing and driving an instability, it is useful to make a comparison with the operation of an internal combustion engine (ICE). In an ICE, a higher thermal efficiency is achieved by releasing the heat via combustion at a higher pressure. Likewise, a stronger driving of a combustion instability happens when the heat is released at a higher pressure. But while high heat release and high pressure coincide (roughly) throughout the combustion chamber in an ICE, they coincide at a particular region or regions during a combustion instability. Furthermore, whereas in an ICE the high pressure is achieved through mechanical compression with a piston or a compressor, in a combustion instability high pressure regions form when a standing acoustic wave is formed.
The physical mechanisms producing the above heat-release fluctuations are numerous. [1] [8] Nonetheless, they can be roughly divided into three groups: heat-release fluctuations due to mixture inhomogeneities; those due to hydrodynamic instabilities; and, those due to static combustion instabilities. To picture heat-release fluctuations due to mixture inhomogeneities, consider a pulsating stream of gaseous fuel upstream of a flame-holder. Such a pulsating stream may well be produced by acoustic oscillations in the combustion chamber that are coupled with the fuel-feed system. Many other causes are possible. The fuel mixes with the ambient air in a way that an inhomogeneous mixture reaches the flame, e.g., the blobs of fuel-and-air that reach the flame could alternate between rich and lean. As a result, heat-release fluctuations occur. Heat-release fluctuations produced by hydrodynamic instabilities happen, for example, in bluff-body-stabilized combustors when vortices interact with the flame (see previous figure). [12] Lastly, heat-release fluctuations due to static instabilities are related to the mechanisms explained in the next section.
Static instability [2] or flame blow-off refer to phenomena involving the interaction between the chemical composition of the fuel-oxidizer mixture and the flow environment of the flame. [13] To explain these phenomena, consider a flame that is stabilized with swirl, as in a gas-turbine combustor, or with a bluff body. Moreover, say that the chemical composition and flow conditions are such that the flame is burning vigorously, and that the former is set by the fuel-oxidizer ratio (see air-fuel ratio) and the latter by the oncoming velocity. For a fixed oncoming velocity, decreasing the fuel-oxidizer ratio makes the flame change its shape, and by decreasing it further the flame oscillates or moves intermittently. In practice, these are undesirable conditions. Further decreasing the fuel-oxidizer ratio blows-off the flame. This is clearly an operational failure. For a fixed fuel-oxidizer ratio, increasing the oncoming velocity makes the flame behave in a similar way to the one just described.
Even though the processes just described are studied with experiments or with Computational Fluid Dynamics, it is instructive to explain them with a simpler analysis. In this analysis, the interaction of the flame with the flow environment is modeled as a perfectly-mixed chemical reactor. [14] With this model, the governing parameter is the ratio between a flow time-scale (or residence time in the reactor) and a chemical-time scale, and the key observable is the reactor's maximum temperature. The relationship between parameter and observable is given by the so-called S-shape curve (see figure). This curve results from the solution of the governing equations of the reactor model. It has three branches: an upper branch in which the flame is burning vigorously, i.e., it is "stable"; a middle branch in which the flame is "unstable" (the probability for solutions of the reactor-model equations to be in this unstable branch is small); and a lower branch in which there is no flame but a cold fuel-oxidizer mixture. The decrease of the fuel-oxidizer ratio or increase of oncoming velocity mentioned above correspond to a decrease of the ratio of the flow and chemical time scales. This in turn corresponds to a movement towards the left in the S-shape curve. In this way, a flame that is burning vigorously is represented by the upper branch, and its blow-off is the movement towards the left along this branch towards the quenching point Q. Once this point is passed, the flame enters the middle branch, becoming thus "unstable", or blows off. This is how this simple model captures qualitatively the more complex behavior explained in the above example of a swirl or bluff-body-stabilized flame.
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to Mach 6.
A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s.
A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than isentropic steps.
A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.
An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.
The J-2, commonly known as Rocketdyne J-2, was a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the United States by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.
The Rijke tube is a cylindrical tube with both ends open, inside of which a heat source is placed that turns heat into sound, by creating a self-amplifying standing wave, due to thermo-acoustic instability. It is an entertaining phenomenon in acoustics and is an excellent example of resonance.
A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, burner can, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high-pressure air by the compression system. The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.
A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970s from the rising cost of fuel.
This timeline of heat engine technology describes how heat engines have been known since antiquity but have been made into increasingly useful devices since the 17th century as a better understanding of the processes involved was gained. A heat engine is any system that converts heat to mechanical energy, which can then be used to do mechanical work.They continue to be developed today.
The General Electric J87 was a nuclear-powered turbojet engine designed to power the proposed WS-125 long-range bomber. The program was started in 1955 in conjunction with Convair for a joint engine/airframe proposal for the WS-125. It was one of two nuclear-powered gas turbine projects undertaken by GE, the other one being the X39 project.
This article briefly describes the components and systems found in jet engines.
The General Electric J73 turbojet was developed by General Electric from the earlier J47 engine. Its original USAF designation was J47-21, but with innovative features including variable inlet guide vanes, double-shell combustor case, and 50% greater airflow was redesignated J73. Its only operational use was in the North American F-86H.
Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.
TM65 is a rocket engine developed by Copenhagen Suborbitals. TM65 uses Ethanol and liquid oxygen as propellants in a pressure-fed power cycle.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.
Thierry Poinsot, is a French researcher, research director at the CNRS, researcher at the Institute of Fluid Mechanics in Toulouse, scientific advisor at CERFACS and senior research fellow at Stanford University. He has been a member of the French Academy of sciences since 2019.
Thermo-acoustic instability refers to an instabiltiy arising due to acoustics field and unsteady heat release process. This instability is very relevant in combustion instabilities in systems such as rocket engines, etc.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)