In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1]
The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler equation. This simplified equation is applicable to inviscid flow as well as flow with low viscosity and a Reynolds number much greater than one. Using the Euler equation, many fluid dynamics problems involving low viscosity are easily solved, however, the assumed negligible viscosity is no longer valid in the region of fluid near a solid boundary (the boundary layer) or, more generally in regions with large velocity gradients which are evidently accompanied by viscous forces. [1] [2] [3]
The flow of a superfluid is inviscid. [4]
Inviscid flows are broadly classified into potential flows (or, irrotational flows) and rotational inviscid flows.
Ludwig Prandtl developed the modern concept of the boundary layer. His hypothesis establishes that for fluids of low viscosity, shear forces due to viscosity are evident only in thin regions at the boundary of the fluid, adjacent to solid surfaces. Outside these regions, and in regions of favorable pressure gradient, viscous shear forces are absent so the fluid flow field can be assumed to be the same as the flow of an inviscid fluid. By employing the Prandtl hypothesis it is possible to estimate the flow of a real fluid in regions of favorable pressure gradient by assuming inviscid flow and investigating the irrotational flow pattern around the solid body. [5]
Real fluids experience separation of the boundary layer and resulting turbulent wakes but these phenomena cannot be modelled using inviscid flow. Separation of the boundary layer usually occurs where the pressure gradient reverses from favorable to adverse so it is inaccurate to use inviscid flow to estimate the flow of a real fluid in regions of unfavorable pressure gradient. [5]
The Reynolds number (Re) is a dimensionless quantity that is commonly used in fluid dynamics and engineering. [6] [7] Originally described by George Gabriel Stokes in 1850, it became popularized by Osborne Reynolds after whom the concept was named by Arnold Sommerfeld in 1908. [7] [8] [9] The Reynolds number is calculated as:
Symbol | Description | Units | |
---|---|---|---|
characteristic length | m | ||
fluid velocity | m/s | ||
fluid density | kg/m3 | ||
fluid viscosity | Pa*s |
The value represents the ratio of inertial forces to viscous forces in a fluid, and is useful in determining the relative importance of viscosity. [6] In inviscid flow, since the viscous forces are zero, the Reynolds number approaches infinity. [1] When viscous forces are negligible, the Reynolds number is much greater than one. [1] In such cases (Re>>1), assuming inviscid flow can be useful in simplifying many fluid dynamics problems.
In a 1757 publication, Leonhard Euler described a set of equations governing inviscid flow: [10]
Symbol | Description | Units |
---|---|---|
material derivative | ||
del operator | ||
pressure | Pa | |
acceleration vector due to gravity | m/s2 |
Assuming inviscid flow allows the Euler equation to be applied to flows in which viscous forces are insignificant. [1] Some examples include flow around an airplane wing, upstream flow around bridge supports in a river, and ocean currents. [1]
In 1845, George Gabriel Stokes published another important set of equations, today known as the Navier-Stokes equations. [1] [11] Claude-Louis Navier developed the equations first using molecular theory, which was further confirmed by Stokes using continuum theory. [1] The Navier-Stokes equations describe the motion of fluids: [1]
When the fluid is inviscid, or the viscosity can be assumed to be negligible, the Navier-Stokes equation simplifies to the Euler equation: [1] This simplification is much easier to solve, and can apply to many types of flow in which viscosity is negligible. [1] Some examples include flow around an airplane wing, upstream flow around bridge supports in a river, and ocean currents. [1]
The Navier-Stokes equation reduces to the Euler equation when . Another condition that leads to the elimination of viscous force is , and this results in an "inviscid flow arrangement". [12] Such flows are found to be vortex-like.
It is important to note, that negligible viscosity can no longer be assumed near solid boundaries, such as the case of the airplane wing. [1] In turbulent flow regimes (Re >> 1), viscosity can typically be neglected, however this is only valid at distances far from solid interfaces. [1] When considering flow in the vicinity of a solid surface, such as flow through a pipe or around a wing, it is convenient to categorize four distinct regions of flow near the surface: [1]
Although these distinctions can be a useful tool in illustrating the significance of viscous forces near solid interfaces, it is important to note that these regions are fairly arbitrary. [1] Assuming inviscid flow can be a useful tool in solving many fluid dynamics problems, however, this assumption requires careful consideration of the fluid sub layers when solid boundaries are involved.
Superfluid is the state of matter that exhibits frictionless flow, zero viscosity, also known as inviscid flow. [4]
To date, helium is the only fluid to exhibit superfluidity that has been discovered. Helium-4 becomes a superfluid once it is cooled to below 2.2K, a point known as the lambda point. [13] At temperatures above the lambda point, helium exists as a liquid exhibiting normal fluid dynamic behavior. Once it is cooled to below 2.2K it begins to exhibit quantum behavior. For example, at the lambda point there is a sharp increase in heat capacity, as it is continued to be cooled, the heat capacity begins to decrease with temperature. [14] In addition, the thermal conductivity is very large, contributing to the excellent coolant properties of superfluid helium. [15] Similarly, Helium-3 is found become a superfluid at 2.491mK.
Spectrometers are kept at a very low temperature using helium as the coolant. This allows for minimal background flux in far-infrared readings. Some of the designs for the spectrometers may be simple, but even the frame is at its warmest less than 20 Kelvin. These devices are not commonly used as it is very expensive to use superfluid helium over other coolants. [16]
Superfluid helium has a very high thermal conductivity, which makes it very useful for cooling superconductors. Superconductors such as the ones used at the LHC (Large Hadron Collider) are cooled to temperatures of approximately 1.9 Kelvin. This temperature allows the niobium-titanium magnets to reach a superconductor state. Without the use of the superfluid helium, this temperature would not be possible. Using helium to cool to these temperatures is very expensive and cooling systems that use alternative fluids are more numerous. [17]
Another application of the superfluid helium is its uses in understanding quantum mechanics. Using lasers to look at small droplets allows scientists to view behaviors that may not normally be viewable. This is due to all the helium in each droplet being at the same quantum state. This application does not have any practical uses by itself, but it helps us better understand quantum mechanics which has its own applications.
Aerodynamics is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
Quantum turbulence is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids. The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman. The dynamics of quantum fluids are governed by quantum mechanics, rather than classical physics which govern classical (ordinary) fluids. Some examples of quantum fluids include superfluid helium, Bose–Einstein condensates (BECs), polariton condensates, and nuclear pasta theorized to exist inside neutron stars. Quantum fluids exist at temperatures below the critical temperature at which Bose-Einstein condensation takes place.
In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-driven flow. It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. The existence of sound waves in a Boussinesq fluid is not possible as sound is the result of density fluctuations within a fluid.
In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external force field. The Froude number is based on the speed–length ratio which he defined as: where u is the local flow velocity, g is the local gravity field, and L is a characteristic length.
In fluid dynamics, d'Alembert's paradox is a paradox discovered in 1752 by French mathematician Jean le Rond d'Alembert. D'Alembert proved that – for incompressible and inviscid potential flow – the drag force is zero on a body moving with constant velocity relative to the fluid. Zero drag is in direct contradiction to the observation of substantial drag on bodies moving relative to fluids, such as air and water; especially at high velocities corresponding with high Reynolds numbers. It is a particular example of the reversibility paradox.
Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.
In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.
Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
Volume viscosity is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions, and the corresponding SI unit is the pascal-second (Pa·s).
In a body submerged in a fluid, unsteady forces due to acceleration of that body with respect to the fluid, can be divided into two parts: the virtual mass effect and the Basset force.
Viscosity is a measure of a fluid's dynamic resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square meter, or pascal-seconds.
In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.
In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in the considered flow. Further, non-dimensionalized Navier–Stokes equations can be beneficial if one is posed with similar physical situations – that is problems where the only changes are those of the basic dimensions of the system.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)