Mercury-Redstone 1

Last updated
Mercury-Redstone 1
Escape rocket of Mercury-Redstone 1.jpg
MR-1 launching the escape rocket.
Mission typeTest flight
Operator NASA
Mission duration2 seconds
Launch failure and failed to orbit
Apogee4 inches (10 cm)
Spacecraft properties
Spacecraft Mercury No.2
Manufacturer McDonnell Aircraft
Launch mass1,230 kilograms (2,720 lb) [1] [note 1]
Start of mission
Launch dateNovember 21, 1960, 14:00 (1960-11-21UTC14Z) UTC
Rocket Redstone MRLV MR-1
Launch site Cape Canaveral LC-5
 

Mercury-Redstone 1 (MR-1) was the first Mercury-Redstone uncrewed flight test in Project Mercury and the first attempt to launch a Mercury spacecraft with the Mercury-Redstone Launch Vehicle. Intended to be an uncrewed sub-orbital spaceflight, it was launched on November 21, 1960 from Cape Canaveral Air Force Station, Florida. The launch failed in an abnormal fashion: immediately after the Mercury-Redstone rocket started to move, it shut itself down and settled back on the pad, after which the capsule jettisoned its escape rocket and deployed its recovery parachutes. The failure has been referred to as the "four-inch flight", for the approximate distance traveled by the launch vehicle. [2]

Contents

Test background and launch failure

The purpose of the MR-1 flight was to qualify the Mercury spacecraft and the Mercury-Redstone launch vehicle for the sub-orbital Mercury mission. It would also qualify the spacecraft's automated flight control and recovery systems, as well as the launch, tracking, and recovery operations on the ground. [3] [4] The flight would also test the Mercury-Redstone's automatic inflight abort sensing system, which would be operating in "open-loop" mode. This meant that the abort sensing system could report a condition requiring an abort, but it would be unable to actually trigger an abort itself. Since the flight did not have a living passenger, this would not pose a safety problem, and it would prevent a faulty abort signal from prematurely ending the flight. [3]

The test used Mercury spacecraft #2 together with Redstone MR-1; [note 2] its launch location was Cape Canaveral Air Force Station's Launch Complex 5. An early launch attempt on November 7 was canceled due to last-minute problems with the capsule, so launching was rescheduled for November 21. [6] [7]

On that day, following a normal countdown, the Mercury-Redstone's engine ignited on schedule at 9:00 a.m. Eastern Standard Time (14:00  GMT). However, the engine shut down immediately after lift-off from the launch pad. The rocket only rose about 4 inches (10 cm) before settling back onto the pad. Alarms were immediately sounded at LC-5, but the Redstone didn't explode. Instead it merely sat in place on the launch pad, after which an unusual sequence of events happened. [4] [6] [8]

Immediately after the Redstone's engine shut down, the Mercury capsule's escape rocket jettisoned itself, leaving the capsule attached to the Redstone booster. The escape rocket rose to an altitude of 4,000 feet (1,200 m) and landed about 400 yards (370 m) away. Three seconds after the escape rocket fired, the capsule deployed its drogue parachute; it then deployed the main and reserve parachutes, ejecting the radio antenna fairing in the process. [4] [6] [8]

In the end, all that had been launched was the escape rocket. However, the fully fueled and powered-up Redstone was now sitting on LC-5 with nothing securing it to the pad. Various other dangers existed as well, such as the capsule's retrorocket package and the range safety destruct charges. Furthermore, the capsule's main and reserve parachutes were hanging down the side of the rocket, threatening to tip it over if they caught enough wind; this did not occur, however, as the weather conditions were favorable. Amid the panicked atmosphere in the control room, the launch team was unable to come up with quick and viable options to rectify the situation. Flight director Chris Kraft rejected several unsafe interventions, including using a rifle to shoot holes in the booster's propellant tanks to depressurize them. He eventually took the advice of one of the test engineers to simply wait out the battery discharge and let the oxidizer boil off. [9] This early test failure and subsequent panic led Kraft to declare "That is the first rule of flight control. If you don't know what to do, don't do anything." [9] Technicians therefore waited until the next morning, when the flight batteries in the rocket and capsule had drained and the Redstone's liquid oxygen had boiled off, before they could work on the rocket and render it safe. [6] [10]

Causes of the failure

Investigation revealed that the Redstone's engine shutdown was caused by two of its electrical cables separating in the wrong order. [6] These cables were a control cable, which provided various control signals, and a power cable, which provided electrical power and grounding. Both cables were plugged into the rocket at the bottom edge of one of its tail fins and would separate at liftoff. [11] The control cable was supposed to separate first, followed by the power cable. However, for this launch, the control cable was longer than expected—it was one designed for the military PGM-11 Redstone missile rather than the shorter cable designed for Mercury-Redstone. This control cable had been clamped to compensate for its greater length, but when the vehicle lifted off, the clamping did not work as planned and the control cable separation was delayed, eventually occurring about 29 milliseconds after the power cable had separated. [4] [12]

During this brief interval, the lack of electrical grounding caused a substantial current to flow through an electrical relay which was supposed to trigger normal engine cut-off at the end of powered flight. This relay tripped, causing the Redstone to shut off its engine and send a "normal cut-off" signal to the capsule. Under normal circumstances, when the capsule received this signal during a flight, it would do two things: it would jettison its escape rocket, which was no longer of any use, and after the escape rocket had flown clear, fire the explosive bolts holding it to the booster for separation. In the case of MR-1, the capsule did jettison the escape rocket as it was designed to, but the separation sequence did not occur. The capsule was designed to suspend this separation until the vehicle's acceleration had almost ceased, so that the capsule would not be hit by a still-accelerating launch vehicle. This would happen when the capsule's acceleration sensors detected an acceleration approaching 0  g, which it would normally experience after the Redstone had shut down and was entering free fall. However, in MR-1, the Redstone was not in free fall but rather sitting supported on the ground. Thus the capsule sensors detected the effect of their own supported weight, which they read as a constant "acceleration" of 1 g. Because of this apparent acceleration, capsule separation was disabled. [4] [13]

The jettison of the escape rocket activated the capsule's parachute recovery system. Since the altitude was below 10,000 feet (3,000 m), this system was triggered by its atmospheric pressure sensors and followed its usual sequence, with the drogue parachute deploying first, followed by the main parachute. But because the main parachute was not supporting the capsule's weight, the parachute system did not detect any load on this chute, so it acted as if the chute had failed and deployed the reserve parachute. [4] [13]

Since the Redstone's automatic inflight abort sensing system was running in open-loop mode, the engine shutdown did not trigger an abort. However, the system did report an abort condition, so it did function properly. [8] [14]

Aftermath

The Redstone had suffered some minor damage from falling back on the pad, but it could still be used after refurbishment, so it was returned to Marshall Space Flight Center in Huntsville, Alabama, and was held in reserve. A new test flight was scheduled, Mercury-Redstone 1A (MR-1A), which would use a new Mercury-Redstone rocket, numbered MR-3. MR-1's Mercury spacecraft, #2, was undamaged, so it was reused for MR-1A, together with the escape rocket from spacecraft #8 and the antenna fairing from spacecraft #10. [4] [15] [16]

To prevent a failure like MR-1's from recurring, subsequent Mercury-Redstones added a grounding strap about 12 inches (30 cm) long to electrically connect the rocket to the launch pad. This strap was designed to separate from the rocket well after all other electrical connections to the ground had been severed. [4] [13] [16]

Mercury engineers were also concerned that MR-1's failure had allowed a "normal cutoff" signal to reach the capsule and trigger the premature jettisoning of the escape rocket, since in an actual emergency this would remove the only escape mechanism for the astronaut. Had MR-1 been a crewed mission, the normal contingency would have been a pad abort, lifting the Mercury capsule off the booster and to safety via the escape rocket. Since the escape rocket had instead jettisoned itself from the capsule the astronaut would have been left in a very precarious situation, stuck inside the Mercury capsule atop a fully fueled, fully independently powered, yet completely untethered and partially damaged Redstone booster. To prevent a situation like this, the Mercury-Redstone was altered so that it could not send a "normal cutoff" signal to the capsule until 129.5 seconds after liftoff, about 10 seconds before the expected time of the Redstone's actual engine cutoff. [13] [17]

MR-1 was never used for another flight after its return to Huntsville. It was eventually put on display at the Space Orientation Center of Marshall Space Flight Center. [14]

Current location

Mercury spacecraft #2, used in both the Mercury-Redstone 1 and Mercury-Redstone 1A flights, was displayed at the NASA Ames Exploration Center, Moffett Federal Airfield, near Mountain View, California. [18] As of July 13, 2022, it is now on display at the Cradle of Aviation Museum in Garden City, New York.[ citation needed ] Other Mercury-Redstone rockets are on display at the U.S. Space & Rocket Center in Huntsville and elsewhere.

Images

Notes

  1. This is the mass of the spacecraft after separation from the launch vehicle, including all spacecraft consumables. It excludes the escape tower, which would be jettisoned before spacecraft separation, and the spacecraft-launch vehicle adapter, which would remain attached to the launch vehicle. Note that Mercury spacecraft #2 lacked some of the equipment present in the spacecraft used on the crewed Mercury flights.
  2. NASA used the prefix "MR-" both for Mercury-Redstone flights and for launch vehicle numbers. Sometimes, as in this case, the flight and launch vehicle numbers were the same, but not always. [5] Some later sources use the prefix "MRLV-" for launch vehicle numbers, but this form does not seem to have been used by NASA.

Related Research Articles

<span class="mw-page-title-main">Project Mercury</span> Initial American crewed spaceflight program (1958–1963)

Project Mercury was the first human spaceflight program of the United States, running from 1958 through 1963. An early highlight of the Space Race, its goal was to put a man into Earth orbit and return him safely, ideally before the Soviet Union. Taken over from the US Air Force by the newly created civilian space agency NASA, it conducted 20 uncrewed developmental flights, and six successful flights by astronauts. The program, which took its name from Roman mythology, cost $2.68 billion. The astronauts were collectively known as the "Mercury Seven", and each spacecraft was given a name ending with a "7" by its pilot.

<span class="mw-page-title-main">Mercury-Redstone 3</span> First United States human spaceflight (1961)

Mercury-Redstone 3, or Freedom 7, was the first United States human spaceflight, on May 5, 1961, piloted by astronaut Alan Shepard. It was the first crewed flight of Project Mercury. The project had the ultimate objective of putting an astronaut into orbit around the Earth and returning him safely. Shepard's mission was a 15-minute suborbital flight with the primary objective of demonstrating his ability to withstand the high g-forces of launch and atmospheric re-entry.

<span class="mw-page-title-main">Mercury-Redstone 4</span> 1961 American crewed sub-orbital spaceflight

Mercury-Redstone 4 was the second United States human spaceflight, on July 21, 1961. The suborbital Project Mercury flight was launched with a Mercury-Redstone Launch Vehicle, MRLV-8. The spacecraft, Mercury capsule #11, was nicknamed Liberty Bell 7. It was piloted by astronaut Virgil "Gus" Grissom.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Mercury-Atlas 1</span>

Mercury-Atlas 1 (MA-1) was the first attempt to launch a Mercury capsule and occurred on July 29, 1960 at Cape Canaveral, Florida. The spacecraft was unmanned and carried no launch escape system. The Atlas rocket suffered a structural failure 58 seconds after launch at an altitude of approximately 30,000 feet (9.1 km) and 11,000 feet (3.4 km) down range. All booster telemetry signals suddenly ceased as the vehicle was passing through Max Q. Because the day was rainy and overcast, the booster was out of sight from 26 seconds after launch, and it was impossible to see what happened.

<span class="mw-page-title-main">Mercury-Redstone 1A</span> Uncrewed suborbital test-flight of the Mercury spacecraft

Mercury-Redstone 1A (MR-1A) was launched on December 19, 1960 from LC-5 at Cape Canaveral, Florida. The mission objectives of this uncrewed suborbital flight were to qualify the spacecraft for space flight and qualify the system for an upcoming primate suborbital flight. The spacecraft tested its instrumentation, posigrade rockets, retrorockets and recovery system. The mission was completely successful. The Mercury capsule reached an altitude of 130 miles (210 km) and a range of 235 miles (378 km). The launch vehicle reached a slightly higher velocity than expected - 4,909 miles per hour (7,900 km/h). The Mercury spacecraft was recovered from the Atlantic Ocean by recovery helicopters about 15 minutes after landing. Serial numbers: Mercury Spacecraft #2 was reflown on MR-1A, together with the escape tower from Capsule #8 and the antenna fairing from Capsule #10. Redstone MRLV-3 was used. The flight time was 15 minutes and 45 seconds.

<span class="mw-page-title-main">Mercury-Redstone 2</span> 1961 American space flight

Mercury-Redstone 2 (MR-2) was the test flight of the Mercury-Redstone Launch Vehicle just prior to the first crewed American space mission in Project Mercury. Carrying a chimpanzee named Ham on a suborbital flight, Mercury spacecraft Number 5 was launched at 16:55 UTC on January 31, 1961, from LC-5 at Cape Canaveral, Florida. The capsule and Ham, the first great ape in space, landed safely in the Atlantic Ocean 16 minutes and 39 seconds after launch.

<span class="mw-page-title-main">Mercury-Redstone BD</span> Additional uncrewed booster development flight

Mercury-Redstone BD was an uncrewed booster development flight in the U.S. Mercury program. It was launched on March 24, 1961, from Launch Complex 5 at Cape Canaveral, Florida. The mission used a boilerplate Mercury spacecraft and Redstone MRLV-5.

<span class="mw-page-title-main">Little Joe 1</span>

Little Joe 1 (LJ-1) was a failed launch of a Little Joe by NASA, a solid fuel rocket that was designed for a Max Q abort and launch escape system test for the Mercury capsule. The objective was to determine how well the escape rocket would function under the most severe dynamic loading conditions anticipated during a Mercury-Atlas launching.

<span class="mw-page-title-main">Beach Abort</span> Uncrewed test of Project Mercury

The Beach Abort was an uncrewed test in NASA's Project Mercury, of the Mercury spacecraft Launch Escape System. Objectives of the test were a performance evaluation of the escape system, the parachute and landing system, and recovery operations in an off-the-pad abort situation. The test took place at NASA's Wallops Island, Virginia, test facility on May 9, 1960. In the test, the Mercury spacecraft and its Launch Escape System were fired from ground level. The flight lasted a total of 1 minute, 16 seconds. The spacecraft reached an apogee of 0.751 kilometres (2,465 ft) and splashed down in the ocean with a range of 0.97 kilometres (0.6 mi).Top speed was a velocity of 436 metres per second (976 mph). A Marine Corps helicopter recovered the spacecraft 17 minutes after launch. The test was considered a success, although there was insufficient separation distance when the tower jettisoned. Mercury Spacecraft #1, the first spacecraft off McDonnell's production line, was used in this test. Total payload weight was 1,154 kilograms (2,544 lb).

<span class="mw-page-title-main">Little Joe II</span> American rocket

Little Joe II was an American rocket used from 1963 to 1966 for five uncrewed tests of the Apollo spacecraft launch escape system (LES), and to verify the performance of the command module parachute recovery system in abort mode. It was named after a similar rocket designed for the same function in Project Mercury. Launched from White Sands Missile Range in New Mexico, it was the smallest of four launch rockets used in the Apollo program.

<span class="mw-page-title-main">Little Joe (rocket)</span> NASA Project Mercury capsule qualification test booster rocket

Little Joe was a solid-fueled booster rocket used by NASA for eight launches from 1959 to 1961 from Wallops Island, Virginia to test the launch escape system and heat shield for Project Mercury capsules, as well as the name given to the test program using the booster. The first rocket designed solely for crewed spacecraft qualifications, Little Joe was also one of the pioneer operational launch vehicles using the rocket cluster principle.

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit or sub-orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Launch escape system</span> A system to get the crew to safety if a rocket launch fails

A launch escape system (LES) or launch abort system (LAS) is a crew-safety system connected to a space capsule. It is used in the event of a critical emergency to quickly separate the capsule from its launch vehicle in case of an emergency requiring the abort of the launch, such as an impending explosion. The LES is typically controlled by a combination of automatic rocket failure detection, and a manual activation for the crew commander's use. The LES may be used while the launch vehicle is on the launch pad, or during its ascent. Such systems are usually of three types:

<span class="mw-page-title-main">Boilerplate (spaceflight)</span> Nonfunctional spacecraft or payload

A boilerplate spacecraft, also known as a mass simulator, is a nonfunctional craft or payload that is used to test various configurations and basic size, load, and handling characteristics of rocket launch vehicles. It is far less expensive to build multiple, full-scale, non-functional boilerplate spacecraft than it is to develop the full system. In this way, boilerplate spacecraft allow components and aspects of cutting-edge aerospace projects to be tested while detailed contracts for the final project are being negotiated. These tests may be used to develop procedures for mating a spacecraft to its launch vehicle, emergency access and egress, maintenance support activities, and various transportation processes.

<span class="mw-page-title-main">Orion abort modes</span> Launch abort modes used by the Orion spacecraft

The Orion Multi-Purpose Crew Vehicle is equipped with a launch escape system. Orion has several abort modes. Some of these may not use the LAS itself, but would use the second stage of the SLS, or even the Orion vehicle's own propulsion system instead.

The Mercury-Redstone Launch Vehicle, designed for NASA's Project Mercury, was the first American crewed space booster. It was used for six sub-orbital Mercury flights from 1960–1961; culminating with the launch of the first, and 11 weeks later, the second American in space. The four subsequent Mercury human spaceflights used the more powerful Atlas booster to enter low Earth orbit.

<span class="mw-page-title-main">Atlas LV-3B</span> American space launch vehicle

The Atlas LV-3B, Atlas D Mercury Launch Vehicle or Mercury-Atlas Launch Vehicle, was a human-rated expendable launch system used as part of the United States Project Mercury to send astronauts into low Earth orbit. Manufactured by Convair, it was derived from the SM-65D Atlas missile, and was a member of the Atlas family of rockets. With the Atlas having been originally designed as a weapon system, testing and design changes were made to the missile to make it a safe and reliable launch vehicle. After the changes were made and approved, the US launched the LV-3B nine times, four of which had crewed Mercury spacecraft.

<span class="mw-page-title-main">Soyuz abort modes</span> Soyuz spacecraft emergency crew rescue systems

In the event of catastrophic failure, the Soyuz spacecraft has a series of automated and semi-automated abort modes to rescue the crew. The abort systems have been refined since the first piloted flights and all abort scenarios for the Soyuz MS are expected to be survivable for the crew.

<span class="mw-page-title-main">Crew Dragon In-Flight Abort Test</span> Post-launch abort test of the SpaceX Dragon 2 spacecraft

SpaceXCrew Dragon In-Flight Abort Test was a successful test of the SpaceX Dragon 2 abort system, conducted on 19 January 2020. It was the final assessment for the Crew Dragon capsule and Falcon 9 launch system before they would be certified to carry humans into space. Booster B1046.4 and an uncrewed capsule C205 were launched from Launch Complex 39A (LC-39A) on a suborbital trajectory, followed by an in-flight abort of the capsule at max Q and supersonic speed. The test was carried out successfully: the capsule pulled itself away from the booster after launch control commanded the abort, and landed safely.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .

  1. Korando, R. D. (February 6, 1961). Mercury Capsule No. 2 Configuration Specification (Mercury-Redstone No. 1) (PDF). St. Louis, Missouri: McDonnell Aircraft Corporation. pp. 7–9. Report number NASA-CR-137390.
  2. "MR-1: The Four-Inch Flight", p. 293.
  3. 1 2 The Mercury-Redstone Project, p. 8-2.
  4. 1 2 3 4 5 6 7 8 NSSDC Master Catalog page.
  5. The Mercury-Redstone Project, p. 6-3, 8-1.
  6. 1 2 3 4 5 The Mercury-Redstone Project, p. 8-3.
  7. "MR-1: The Four-Inch Flight", pp. 293-294.
  8. 1 2 3 "MR-1: The Four-Inch Flight", p. 294.
  9. 1 2 Kranz, Gene (2000). Failure is not an Option . Simon and Schuster.
  10. "MR-1: The Four-Inch Flight", pp. 294-296.
  11. The Mercury-Redstone Project, p. 4-6, 4-47.
  12. The Mercury-Redstone Project, p. 8-3, 8-5.
  13. 1 2 3 4 The Mercury-Redstone Project, p. 8-5.
  14. 1 2 The Mercury-Redstone Project, p. 8-6.
  15. The Mercury-Redstone Project, p. 8-5, 8-6.
  16. 1 2 "MR-1: The Four-Inch Flight", p. 296.
  17. "MR-1: The Four-Inch Flight", p. 296-297.
  18. "NASA Ames Exploration Center". NASA Ames Research Center . Retrieved 2009-05-14.

Bibliography