North American F-86 Sabre

Last updated

F-86 Sabre
F86F Sabres - Chino Airshow 2014 (cropped).jpg
A North American F-86 over the Planes of Fame Air Museum in Chino, California
Role Fighter aircraft
National originUnited States
Manufacturer North American Aviation
First flight1 October 1947
Introduction1949, with USAF
Retired1965 (USAF)
Primary users United States Air Force
Japan Air Self-Defense Force
Spanish Air Force
Republic of Korea Air Force
Number built9,860 [1]
Developed from North American FJ-1 Fury
Variants Canadair Sabre
North American FJ-2/-3 Fury
Developed into CAC Sabre
North American F-86D Sabre
North American FJ-4 Fury
North American YF-93
North American F-100 Super Sabre

The North American F-86 Sabre, sometimes called the Sabrejet, is a transonic jet fighter aircraft. Produced by North American Aviation, the Sabre is best known as the United States' first swept-wing fighter that could counter the swept-wing Soviet MiG-15 in high-speed dogfights in the skies of the Korean War (1950–1953), fighting some of the earliest jet-to-jet battles in history. Considered one of the best and most important fighter aircraft in that war, the F-86 is also rated highly in comparison with fighters of other eras. [2] Although it was developed in the late 1940s and was outdated by the end of the 1950s, the Sabre proved versatile and adaptable and continued as a front-line fighter in numerous air forces.

Contents

Its success led to an extended production run of more than 7,800 aircraft between 1949 and 1956, in the United States, Japan, and Italy. In addition, 738 carrier-modified versions were purchased by the US Navy as FJ-2s and -3s. Variants were built in Canada and Australia. The Canadair Sabre added another 1,815 aircraft and the significantly redesigned CAC Sabre (sometimes known as the Avon Sabre or CAC CA-27), had a production run of 112. The Sabre is by far the most-produced Western jet fighter, with a total production of all variants at 9,860 units. [1]

Development

Straight-wing NA-140/XP-86 North American NA-140-XP-86 3-view.png
Straight-wing NA-140/XP-86

North American Aviation had produced the propeller-powered P-51 Mustang in World War II, which saw combat against some of the first operational jet fighters. By late 1944, North American proposed its first jet fighter to the U.S. Navy, which became the FJ-1 Fury. It was an unexceptional transitional jet fighter that had a straight wing derived from the P-51. [3] [4] Initial proposals to meet a United States Army Air Forces (USAAF) requirement for a medium-range, single-seat, high-altitude, jet-powered day escort fighter/fighter bomber were drafted in mid-1944. [5] In early 1945, North American Aviation submitted four designs. [5] The USAAF selected one design over the others and granted North American a contract to build three examples of the XP-86 ("experimental pursuit"). Deleting specific requirements from the FJ-1 Fury, coupled with other modifications, allowed the XP-86 to be lighter and considerably faster than the Fury, with an estimated top speed of 582 mph (937 km/h), versus the Fury's 547 mph (880 km/h). [5] Despite the gain in speed, early studies revealed the XP-86 would have the same performance as its rivals, the XP-80 and XP-84. Because these rival designs were more advanced in their development stages, it was feared that the XP-86 would be cancelled.

Crucially, the XP-86 was not able to meet the required top speed of 600 mph (970 km/h); [6] North American had to quickly devise a radical change that could leapfrog its rivals. The North American F-86 Sabre was the first American aircraft to take advantage of flight research data seized from the German aerodynamicists at the end of World War II. [7] These data showed that a thin, swept wing could greatly reduce drag and delay compressibility problems that had bedeviled fighters such as the Lockheed P-38 Lightning when approaching the speed of sound. By 1944, German engineers and designers had established the benefits of swept wings based on experimental designs dating back to 1940. A study of the data showed that a swept wing would solve their speed problem, while a slat on the wing's leading edge that extended at low speeds would enhance low-speed stability.

Because development of the XP-86 had reached an advanced stage, the idea of changing the sweep of the wing was met with resistance from some senior North American staff. Despite stiff opposition, after good results were obtained in wind tunnel tests, the swept-wing concept was eventually adopted. Performance requirements were met by incorporating a 35° swept-back wing, using modified NACA four-digit airfoils, NACA 0009.5–64 at the root and NACA 0008.5–64 at the tip, [8] with an automatic slat design based on that of the Messerschmitt Me 262 and an electrically adjustable stabilizer, another feature of the Me 262A. [9] [10] [11] Many Sabres had the "6–3 wing" (a fixed leading edge with a 6-inch extended chord at the root and a 3-inch extended chord at the tip) retrofitted after combat experience was gained in Korea. [9] [12] This modification changed the wing airfoils to the NACA 0009-64 modified configuration at the root and the NACA 0008.1–64 mod at the tip. [8] [ dead link ]

The XP-86 prototype, which led to the F-86 Sabre, was rolled out on 8 August 1947. [13] The first flight occurred on 1 October 1947 with George Welch at the controls, [14] flying from Muroc Dry Lake (now Edwards AFB), California. [7] [13]

The United States Air Force's Strategic Air Command had F-86 Sabres in service from 1949 through 1950. The F-86s were assigned to the 22nd Bomb Wing, the 1st Fighter Wing, and the 1st Fighter Interceptor Wing. [15] The F-86 was the primary U.S. air combat fighter during the Korean War, with significant numbers of the first three production models seeing combat.

The F-86 Sabre was also produced under license by Canadair, Ltd, as the Canadair Sabre. The final variant of the Canadian Sabre, the Mark 6, is generally rated as having the highest capabilities of any Sabre version. [16] [Note 1]

Breaking sound barrier and other records

Jackie Cochran in the cockpit of the Canadair Sabre with Chuck Yeager Cochrane with Yeager.jpg
Jackie Cochran in the cockpit of the Canadair Sabre with Chuck Yeager

The F-86A set its first official world speed record of 671 miles per hour (1,080 km/h) on September 15, 1948, at Muroc Dry Lake, flown by Major Richard L. Johnson, USAF. [17] Five years later, on 18 May 1953, Jacqueline Cochran became the first woman to break the sound barrier, flying a "one-off" Canadian-built F-86 Sabre Mk 3, alongside Chuck Yeager. [18] Col. K. K. Compton won the 1951 Bendix air race in an F-86A with an average speed of 553.76 mph (891.19 km/h).

Design

Overview

Sabre at NASM in livery of 4th Fighter-Interceptor Wing F86Sabre.JPG
Sabre at NASM in livery of 4th Fighter-Interceptor Wing

The F-86 was produced as both a fighter-interceptor and fighter-bomber. Several variants were introduced over its production life, with improvements and different armament implemented (see below). The XP-86 was fitted with a General Electric J35-C-3 jet engine that produced 4,000 lbf (18 kN) of thrust. This engine was built by GM's Chevrolet division until production was turned over to Allison. [19] The General Electric J47-GE-7 engine was used in the F-86A-1 producing a thrust of 5,200 lbf (23 kN), while the General Electric J73-GE-3 engine of the F-86H produced 9,250 lbf (41 kN) of thrust. [20]

The fighter-bomber version (F-86H) could carry up to 2,000 lb (907 kg) of bombs, including an external fuel-type tank that could carry napalm. [21] Unguided 2.75-inch (70-millimeter) rockets were used on some fighters on training missions, but 5-inch (127 mm) rockets were later carried on combat operations. The F-86 could also be fitted with a pair of external jettisonable jet fuel tanks (four on the F-86F beginning in 1953) that extended the range of the aircraft. Both the interceptor and fighter-bomber versions carried six 0.50 in (12.7 mm) M3 Browning machine guns with electrically-boosted feed in the nose (later versions of the F-86H carried four 20 mm (0.79 in) cannon instead of machine guns). Firing at a rate of 1,200 rounds per minute, [22] the 0.50-inch guns were harmonized to converge at 1,000 ft (300 m) in front of the aircraft, using armor-piercing (AP) and armor-piercing incendiary (API) rounds, with one armor-piercing incendiary tracer (APIT) for every five AP or API rounds. The API rounds used during the Korean War contained magnesium, which were designed to ignite upon impact, but burned poorly above 35,000 ft (11,000 m) as oxygen levels were insufficient to sustain combustion at that height. Initial planes were fitted with the Mark 18 manual-ranging computing gun sight. The last 24 F-86A-5-Nas and F-86Es were equipped with the A-1CM gunsight-AN/APG-30 radar, which used radar to automatically compute a target's range, which later proved to be advantageous against MiG opponents over Korea. [23]

Flying characteristics

The Sabre's swept wings and jet engine produced a flying experience that was very different from the propeller-driven fighters of the time. The transition from props to jets was not without accidents and incidents even for experienced fighter pilots. Early on in the jet age, some US manufacturers instituted safety and transition programs where experienced test and production pilots toured operational fighter squadrons to provide instruction and demonstrations designed to lower the accident rate. [24]

Additionally, the ongoing technical development and long production history of the F-86 resulted in some significant differences in the handling and flying characteristics between the various F-86 models. Some of the important changes to the design included the switch from an elevator/stabilizer to an all-flying tail, the discontinuation of leading edge slats for a solid leading edge with increased internal fuel capacity, increased engine power, and an internal missile bay (F-86D). Each of these design changes impacted the handling and flying characteristics of the F-86, not necessarily for the better. In the case of the solid leading edge and increased internal fuel capacity, the design change produced increased combat performance but exacerbated a dangerous and often fatal handling characteristic upon take-off if the nose were raised prematurely from the runway. [25] This 'over-rotation' danger is now a major area of instruction and concern for current F-86 pilots. The 1972 Sacramento Canadair Sabre accident resulting in 22 fatalities and 28 other casualties was a result of over-rotation on take-off.

Operational history

Korean War

USAF North American F-86 Sabre fighters from the 51st Fighter Interceptor Wing Checkertails are readied for combat during the Korean War at Suwon Air Base 51st fighter interceptor wing at suwon, s.k.jpg
USAF North American F-86 Sabre fighters from the 51st Fighter Interceptor Wing Checkertails are readied for combat during the Korean War at Suwon Air Base

The F-86 entered service with the USAF in 1949, joining the 1st Fighter Wing's 94th Fighter Squadron and became the primary air-to-air jet fighter used by the Americans in the Korean War. While earlier straight-winged jets such as the P-80 and F-84 initially achieved air victories, when the swept-wing Soviet MiG-15 was introduced in November 1950, it outperformed all UN-based aircraft. In response, three squadrons of F-86s were rushed to the Far East in December. [26] Early variants of the F-86 could not out turn, but they could out dive the MiG-15. The MiG-15 was superior to early F-86 models in ceiling, acceleration, rate of climb, and zoom. With the introduction of the F-86F in 1953, the two aircraft were more closely matched, with many combat-experienced pilots claiming a marginal superiority for the F-86F. The heavier firepower of the MiG (and many other contemporary fighters) was addressed by fielding eight cannon-armed F-86s in the waning months of the war. Despite being able to fire only two of the four 20 mm cannon at a time, the experiment was considered a success. [27] The MiGs flown from bases in Manchuria by Chinese, North Korean, and Soviet VVS pilots were pitted against two squadrons of the 4th Fighter-Interceptor Wing forward-based at K-14, Kimpo, Korea. [26] In October 1951, the Soviets managed to recover a downed Sabre, and in their investigation of the type they concluded that the Sabre's advantage in combat was due to the APG-30 gun-sight that facilitated accurate fire at longer ranges. [23]

Rare Korean War F-86 gun camera footage of a MiG-15 shoot-down over Korea F86GunCamKorea.gif
Rare Korean War F-86 gun camera footage of a MiG-15 shoot-down over Korea

Many of the American pilots were experienced World War II veterans, while the North Koreans and the Chinese lacked combat experience, thus accounting for much of the F-86's success. [28] However, United Nations pilots suspected many of the MiG-15s were being flown by experienced Soviet pilots who also had combat experience in World War II. Former Communist sources now acknowledge Soviet pilots initially flew the majority of MiG-15s that fought in Korea, and dispute that more MiG-15s than F-86s were shot down in air combat. Later in the war, North Korean and Chinese pilots increased their participation as combat flyers. [29] [30] The North Koreans and their allies periodically contested air superiority in MiG Alley, an area near the mouth of the Yalu River (the boundary between Korea and China) over which the most intense air-to-air combat took place. Although the F-86A could be safely flown through Mach 1, the F-86E's all-moving tailplane greatly improved maneuverability at high speeds. [27] The MiG-15 could not safely exceed Mach 0.92, an important disadvantage in near-sonic air combat. Far greater emphasis had been given to the training, aggressiveness, and experience of the F-86 pilots. [28] American Sabre pilots were trained at Nellis, where the casualty rate of their training was so high, they were told, "If you ever see the flag at full staff, take a picture." Despite rules of engagement to the contrary, F-86 units frequently initiated combat over MiG bases in the Manchurian "sanctuary". [29] The hunting of MiGs in Manchuria would lead to many reels of gun camera footage being 'lost' if the reel revealed the pilot had violated Chinese airspace.

The needs of combat operations balanced against the need to maintain an adequate force structure in Western Europe led to the conversion of the 51st Fighter-Interceptor Wing from the F-80 to the F-86 in December 1951. Two fighter-bomber wings, the 8th and 18th, converted to the F-86F in the spring of 1953. [31] No. 2 Squadron, South African Air Force (SAAF) also distinguished itself flying F-86s in Korea as part of the 18 FBW. [32]

Wreckage of F-86A Sabre (FU-334 / 49-1334) after being bombed on 17 June 1951 North korean bombing cropped1.jpg
Wreckage of F-86A Sabre (FU-334 / 49-1334) after being bombed on 17 June 1951

On 17 June 1951, at 01:30 hours, Suwon Air Base was bombed by two Polikarpov Po-2 biplanes. Each Po-2 dropped a pair of fragmentation bombs: one scored a hit on the 802nd Engineer Aviation Battalion's motor pool, damaging some equipment. Two bombs burst on the flightline of the 335th Fighter Interceptor Squadron. One F-86A Sabre (FU-334 / 49-1334) was struck on the wing and began burning. The fire took hold, gutting the aircraft. Prompt action by personnel who moved aircraft away from the burning Sabre prevented further loss. Eight other Sabres were damaged in the brief attack, four seriously. One F-86 pilot was among the wounded. The North Koreans subsequently credited Lt. La Woon Yung with this damaging attack. [33]

By the end of hostilities, F-86 pilots were credited with shooting down 792 MiGs for a loss of only 78 Sabres in air-to-air combat, a victory ratio of 10:1. [34] Of the 41 American pilots who earned the designation of ace during the Korean War, all but one flew the F-86 Sabre, the exception being a Navy Vought F4U Corsair night fighter pilot. However, after the war, the USAF reviewed its figures in an investigation code-named Sabre Measure Charlie and downgraded the kill ratio of the North American F-86 Sabre against the Mikoyan-Gurevich MiG-15 by half. [35] Internally, the USAF accepted that its pilots in fact downed ~ 200 MiGs [36]

According to Soviet data, the Soviets lost 335 MiG-15s in Korea to all causes, including accidents, antiaircraft fire, and ground attacks. [37] Chinese claims of their losses amount to 224 MiG-15s in Korea. [38] North Korean losses are not known, but according to North Korean defectors, their air force lost around 100 MiG-15s during the war. [39] Thus, 659 MiG-15s are admitted as being lost, many of these to F-86 Sabres [40] The Soviets claimed to have downed over 600 Sabres, [41] together with the Chinese claims (211 F-86s shot-down), although these cannot be reconciled with the number of Sabres recorded as lost by the US. [42]

The status of many claimed air-to-air victories in the Korean War has been increasingly debated as more data becomes available, showing that instances of over-claiming abounded on both sides. The research by Dorr, Lake and Thompson claimed an F-86 kill ratio closer to 2:1. [43] A recent RAND report made reference to "recent scholarship" of F-86 v MiG-15 combat over Korea and concluded that the actual kill:loss ratio for the F-86 was 1.8:1 overall, and likely closer to 1.3:1 against MiGs flown by Soviet pilots. [44] However, this ratio did not count the number of aircraft of other types (including the B-29, A-26, F-80, F-82, F-84 and Gloster Meteor) shot down by MiG-15 pilots.

Data-matching with Soviet records suggests that US pilots routinely attributed their own combat losses to "landing accidents" and "other causes". [45] According to official US data ("USAF Statistical Digest FY1953"), the USAF lost 250 F-86 fighters in Korea. Of these, 184 were lost in combat (78 in air-to-air combat, 19 by anti-aircraft guns, 26 were "unknown causes" and 61 were "other losses") and 66 in incidents. [46] South African Air Force lost 6 F-86s in the war. [47] This gives 256 confirmed F-86 losses during the Korean War.

Cold War

In addition to its distinguished service in Korea, USAF F-86s also served in various stateside and overseas roles throughout the early part of the Cold War. As newer Century-series fighters came on line, F-86s were transferred to Air National Guard (ANG) units or the air forces of allied nations. The last ANG F-86s continued in U.S. service until 1970.

1958 Taiwan Strait crisis

A Taiwanese F-86F on display ROCAF F-86 6408 in Military Airplanes Display Area 20111015.jpg
A Taiwanese F-86F on display

The Republic of China Air Force of Taiwan was an early recipient of surplus USAF Sabres. From December 1954 to June 1956, the ROC Air Force received 160 ex-USAF F-86F-1-NA through F-86F-30-NA fighters. By June 1958, the Nationalist Chinese had built up an impressive fighter force, with 320 F-86Fs and seven RF-86Fs having been delivered. [48]

Sabres and MiGs were shortly to battle each other in the skies of Asia once again in the Second Taiwan Strait Crisis. In August 1958, the Chinese Communists of the People's Republic of China attempted to force the Nationalists off of the islands of Quemoy and Matsu by shelling and blockade. Nationalist F-86Fs flying combat air patrol over the islands found themselves confronted by Communist MiG-15s and MiG-17s, and numerous dogfights resulted.

During these battles, the Nationalist Sabres introduced a new element into aerial warfare. Under a secret effort designated Operation Black Magic, the U.S. Navy had provided the ROC with the AIM-9 Sidewinder, its first infrared-homing air-to-air missile, which was just entering service with the United States. A small team from VMF-323, a Marine FJ-4 Fury squadron with later assistance from China Lake and North American Aviation, initially modified 20 of the F-86 Sabres to carry a pair of Sidewinders on underwing launch rails and instructed the ROC pilots in their use flying profiles with USAF F-100s simulating the MiG-17. The MiGs enjoyed an altitude advantage over the Sabres, as they had in Korea, and Communist Chinese MiGs routinely cruised over the Nationalist Sabres, only engaging when they had a favorable position. The Sidewinder took away that advantage and proved to be devastatingly effective against the MiGs. [49]

Indo-Pakistani War of 1965

PAF Sabre being shot down in combat by an IAF Gnat in September 1965 PAF Sabre being shot down in combat by an IAF Gnat in September 1965.jpg
PAF Sabre being shot down in combat by an IAF Gnat in September 1965

In 1954, Pakistan began receiving the first of a total of 120 F-86F Sabres. Many of these aircraft were F-86F-35s from USAF stocks, but some were from the later F-86F-40-NA production block, made specifically for export. Many of the −35s were brought up to −40 standards before they were delivered to Pakistan, but a few remained −35s. The F-86 was operated by nine Pakistan Air Force (PAF) squadrons at various times: Nos. 5, 11, 14, 15, 16, 17, 18, 19, and 26 Squadrons.

The Sabre was no longer a world-class fighter (due to availability of supersonic jets). However, many sources state the F-86 gave the PAF a technological advantage. [50] [51] [ unreliable source? ] [52]

Air to air combat

In the air-to-air combat of the Indo-Pakistani War of 1965, the PAF Sabres claimed to have shot down 15 Indian Air Force (IAF) aircraft, comprising nine Hunters, four Vampires, and two Gnats.[ citation needed ] India, however, admitted a loss of 14 combat aircraft to the PAF's F-86s. [53] The F-86s of the PAF had the advantage of being armed with AIM-9B/GAR-8 Sidewinder missiles, whereas none of its Indian adversaries had this capability. Despite this, the IAF claimed to have shot down four PAF Sabres in air-to-air combat. [54]

The Indian Air Force claimed that seven F-86 Sabres were shot down by Folland Gnats and six F-86 Sabres were shot down by Hawker Hunters. [54]

Ground attack

The aircraft remained a potent weapon for use against ground targets. On the morning of 6 September, six F-86s of No. 19 Sqn struck advancing columns of the Indian army using 5-in (127-mm) rockets along with their six .50-in (12.7-mm) M3 Browning machine guns. On the same day, eight F-86 fighters of the same squadron executed an attack against IAF Pathankot. [55] No. 14 PAF Squadron earned the nickname "Tailchoppers" for their successful attack against the Indian bomber base in Kalaikunda. [56]

PAF claims of destroying around 36 aircraft on the ground at various Indian airfields. [55] [56] [57] However, India only acknowledges 22 aircraft lost on the ground to strikes partly attributed to the PAF's F-86s and its bomber Martin B-57 Canberra. [53]

Indo-Pakistani War of 1971

The Canadair Sabres (Mark 6), acquired from ex-Luftwaffe stocks via Iran, were the mainstay of the PAF's day-fighter operations during the Indo-Pakistani War of 1971, and had the challenge of dealing with the threat from IAF.[ citation needed ] [58]

At the beginning of the war, PAF had eight squadrons of F-86 Sabres. [59] Along with the newer fighter types such as the Mirage III and the Shenyang F-6, the Sabres were tasked with the majority of operations during the war. In East Pakistan, only one PAF F-86 squadron (14th Squadron) was deployed to face the numerical superiority of the IAF.

In the Battle of Boyra Indian Folland Gnats of 22 Squadron IAF shot down two F-86Es and severely damaged one F-86E. [60] [61]

PAF F-86s performed well, with Pakistani claims of downing 31 Indian aircraft in air-to-air combat. These included 17 Hawker Hunters, eight Sukhoi Su-7 "Fitters", one MiG 21, and three Gnats [ citation needed ] while losing seven F-86s. The most interesting of these was a battle between two Sabres and four MiG-21s. One MiG was shot down, without any Sabres lost. This was achieved due to the greater low-speed performance of the Sabre in comparison to the delta-winged MiG-21. [62]

India, however, claims to have shot down 11 PAF Sabres for the loss of 11 combat aircraft to the PAF F-86s. [63] The IAF numerical superiority overwhelmed the sole East Pakistan Sabres squadron (and other military aircraft) [60] [64] which were either shot down, or grounded by Pakistani fratricide as they could not hold out, enabling complete air superiority for the IAF. [65]

After this war, Pakistan slowly phased out its F-86 Sabres and replaced them with Chinese F-6 (Soviet MiG-19 based) fighters. The last of the Sabres were withdrawn from service in PAF in 1980.[ citation needed ] They are now displayed in Pakistan Air Force Museum and in the cities in which their pilots lived.

Guinea-Bissau War of Independence

In 1958, the Forca Aerea Portuguesa (FAP) received 50 F-86Fs from ex-USAF stocks. A few former Norwegian Air Force F-86Fs were also purchased as spares in 1968–69.

The FAP deployed some of its F-86F Sabres to Portuguese Guinea in 1961, being based at AB2 – Bissalanca Air Base, Bissau. These aircraft formed "Detachment 52", initially equipped with eight F-86Fs (serials: 5307, 5314, 5322, 5326, 5354, 5356, 5361, and 5362) from the Esquadra 51, based at the BA5 – Monte Real Air Base. These aircraft were used in the Guinea-Bissau War of Independence, in ground-attack and close-support operations against the insurgent forces. In August 1962, 5314 overshot the runway during an emergency landing with bombs still attached on underwing hardpoints and burned out. F-86F 5322 was shot down by enemy ground fire on 31 May 1963; the pilot ejected safely and was recovered. Several other aircraft suffered combat damage but were repaired.

In 1964, 16 F-86Fs based at Bissalanca returned to mainland Portugal due to U.S. pressure. They had flown 577 combat sorties, of which 430 were ground-attack and close-air-support missions.

Philippine Air Force

The Philippine Air Force (PhAF) first received the Sabres in the form of F-86Fs in 1957, replacing the North American P-51 Mustang as their primary interceptor. F-86s first operated from Basa Air Base, known infamously as the "Nest of Vipers", where the 5th Fighter Wing of the PhAF was based. Later on, in 1960, the PhAF acquired the F-86D as their first all-weather interceptor. The most notable use of the F-86 Sabres was in the Blue Diamonds aerobatic display team, which operated eight Sabres until the arrival of the newer, supersonic Northrop F-5. The F-86s were subsequently phased out of service in the 1970s as the Northrop F-5 Freedom Fighter and Vought F-8 Crusaders became the primary fighters and interceptors of the PhAF. Antonio Bautista was a Blue Diamonds pilot and a decorated officer. He was killed on 11 January 1974 during a combat sortie against rebels in the south of the country. [66]

Soviet Sabre

During the Korean War, the Soviets were searching for an intact U.S. F-86 Sabre for evaluation/study purposes. Their search was frustrated, largely due to the U.S. military's policy of destroying their weapons and equipment once they had been disabled or abandoned; in the case of U.S. aircraft, USAF pilots destroyed most of their downed Sabres by strafing or bombing them. However, on one occasion, an F-86 was downed in the tidal area of a beach and subsequently was submerged, preventing its destruction. The aircraft was ferried to Moscow and a new OKB (Soviet Experimental Design Bureau) was established to study the F-86, which later became part of the Sukhoi OKB. "At least one F-86… was sent to the Soviet Union, the Russians[ sic ] admitted, and other planes and prizes such as U.S. G-suits and radar gun sights also went." [67] The Soviets studied and copied the optical gunsight and radar from the captured aircraft to produce the ASP-4N gunsight and SRC-3 radar. Installed in the MiG-17, the gunsight system was later used against American fighters in the Vietnam War. [Note 2] The F-86 studies also contributed to the development of aircraft aluminum alloys such as V-95. [69] [ failed verification ]

Feather Duster

The old but nimble MiG-17 had become such a serious threat against the Republic F-105 Thunderchief over North Vietnam that the USAF created project "Feather Duster" to test which tactics supersonic American fighters could use against fighters such as the MiG-17. ANG F-86H units proved to be an ideal stand-in for the Soviet jets. One pilot remarked, "In any envelope except nose down and full throttle", either the F-100 or F-105 was inferior to the F-86H in a dogfight. [70] [71]

Variants

North American F-86

Family tree of Sabre & Fury variants Sabre familytree2.svg
Family tree of Sabre & Fury variants
Preserved airworthy F-86A Sabre at Kemble Air Day 2008, England F-86a sabre fu-178 kemble arp.jpg
Preserved airworthy F-86A Sabre at Kemble Air Day 2008, England
TF-86F NAA TF-86 transonic trainer.jpg
TF-86F
F-86H-10-NH Sabre s/n 53-1308 at the Wings Museum, Denver, Colorado F86HwingsMus531308.jpg
F-86H-10-NH Sabre s/n 53-1308 at the Wings Museum, Denver, Colorado
F-86H without skin panels at the National Museum of the United States Air Force F-86H-NMUSAF.jpg
F-86H without skin panels at the National Museum of the United States Air Force
XF-86
three prototypes, originally designated XP-86, North American model NA-140
YF-86A
this was the first prototype fitted with a General Electric J47 turbojet engine.
F-86A
554 built, North American model NA-151 (F-86A-1 block and first order of A-5 block) and NA-161 (second F-86A-5 block)
DF-86A
A few F-86A conversions as drone directors
RF-86A
11 F-86A conversions with three cameras for reconnaissance
F-86B
188 ordered as upgraded A-model with wider fuselage and larger tires but delivered as F-86A-5, North American model NA-152
F-86C
original designation for the YF-93A, two built, 48–317 & 48–318, [72] order for 118 cancelled, North American model NA-157
YF-86D
prototype all-weather interceptor originally ordered as YF-95A, two built but designation changed to YF-86D, North American model NA-164
F-86D/L
Production transonic all-weather search-radar equipped interceptor originally designated F-95A, 2,506 built. The F-86D had only 25 percent commonality with other Sabre variants, with a larger fuselage, larger afterburning engine, and a distinctive nose radome. Sole armament was Mk. 4 unguided rockets instead of machine guns. F-86Ls were upgraded F-86Ds.
F-86E
Improved flight control system and an "all-flying tail" (This system changed to a full power-operated control with an "artificial feel" built into the aircraft's controls to give the pilot forces on the stick that were still conventional, but light enough for superior combat control. It improved high-speed maneuverability); 456 built, North American model NA-170 (F-86E-1 and E-5 blocks), NA-172, essentially the F-86F airframe with the F-86E engine (F-86E-10 and E-15 blocks); 60 of these built by Canadair for USAF (F-86E-6)
F-86E(M)
Designation for ex-RAF Sabres diverted to other NATO air forces
QF-86E
Designation for surplus RCAF Sabre Mk. Vs modified to target drones
F-86F
Uprated engine and larger "6–3" wing without leading-edge slats, 2,239 built; North American model NA-172 (F-86F-1 through F-15 blocks), NA-176 (F-86F-20 and −25 blocks), NA-191 (F-86F-30 and −35 blocks), NA-193 (F-86F-26 block), NA-202 (F-86F-35 block), NA-227 (first two orders of F-86F-40 blocks comprising 280 aircraft that reverted to leading-edge wing slats of an improved design), NA-231 (70 in third F-40 block order), NA-238 (110 in fourth F-40 block order), and NA-256 (120 in final F-40 block order); 300 additional aircraft in this series assembled by Mitsubishi in Japan for Japanese Air Self-Defense Force. Sabre Fs had much improved high-speed agility, coupled with a higher landing speed of over 145 mph (233 km/h). The F-35 block had provisions for a new task: the nuclear tactical attack with one of the new small "nukes" ("second generation" nuclear ordnance). The F-40 had a new slatted wing with a slightly higher span, resulting in a slight decrease in speed, but also much better agility at both high and low speeds and a reduced landing speed of 124 mph (200 km/h). The USAF upgraded many previous F versions to the F-40 standard. One E and two Fs were modified for improved performance via rocket boost.
F-86F(R)
F-86F-30 (52-4608) had a Rocketdyne AR2-3 with 3,000–6,000 lbf (13,344.66–26,689.33 N) thrust at 35,000 ft (10,668 m), giving a top speed of M1.22 at 60,000 ft (18,288 m). [27]
F-86F-2
Designation for 10 aircraft modified to carry the M39 cannon in place of the M3 .50 caliber machine gun "six-pack". Four F-86E-10s (serial numbers 51-2803, 2819, 2826 and 2836) and six F-86F-1s (serial numbers 51-2855, 2861, 2867, 2868, 2884 and 2900) were production-line aircraft modified in October 1952 with enlarged and strengthened gun bays, then flight tested at Edwards Air Force Base and the Air Proving Ground at Eglin Air Force Base in November. Eight were shipped to Japan in December and seven forward-deployed to Kimpo Airfield as "Project GunVal" for a 16-week combat field trial in early 1953. Two were lost to engine compressor stalls after ingesting excessive propellant gases from the cannons. [73] [Note 3] [74]
QF-86F
About 50 former Japan Self-Defense Forces (JASDF) F-86F aircraft converted to drones for use as targets by the U.S. Navy
RF-86F
Some F-86F-30s converted with three cameras for reconnaissance; also 18 Japan Self-Defense Forces (JASDF) aircraft similarly converted
TF-86F
Two F-86F converted to two-seat training configuration with lengthened fuselage and slatted wings under North American model NA-204
YF-86H
Extensively redesigned fighter-bomber model with deeper fuselage, uprated engine, longer wings and power-boosted tailplane, two built as North American model NA-187
F-86H
Production model, 473 built, with Low Altitude Bombing System (LABS) and provision for nuclear weapon, North American model NA-187 (F-86H-1 and H-5 blocks) and NA-203 (F-86H-10 block)
QF-86H
Target conversion of 29 aircraft for use at United States Naval Weapons Center
F-86J
Single F-86A-5-NA, 49-1069, flown with Orenda turbojet under North American model NA-167 – same designation reserved for A-models flown with the Canadian engines but project not proceeded with
F-86K
F-86L

North American FJ Fury

See: North American FJ-2/-3 Fury for production figures of U.S. Navy versions.

CAC Sabre (Australia)

Preserved CAC Sabre Mk 30 in 2018. Royal Australian Air Force, on loan to the Temora Aviation Museum, (VH-IPN, former military registration A94-983) CAC Sabre Mk.32 landing at Avalon during the 2015 Australian International Airshow.jpg
Preserved CAC Sabre Mk 30 in 2018.

Two types based on the U.S. F-86F were built under licence by the Commonwealth Aircraft Corporation (CAC) in Australia, for the Royal Australian Air Force as the CA-26 (one prototype) and CA-27 (production variant). The RAAF operated the CA-27 from 1956 to 1971. [75] The CAC Sabres included a 60% fuselage redesign, to accommodate the Rolls-Royce Avon Mk 26 engine, which had roughly 50% more thrust than the J47, as well as 30 mm Aden cannon and AIM-9 Sidewinder missiles. As a consequence of its powerplant, the Australian-built Sabres are commonly referred to as the Avon Sabre. CAC manufactured 112 of these aircraft. [76] Ex-RAAF Avon Sabres were operated by the Royal Malaysian Air Force (TUDM) between 1969 and 1972. From 1973 to 1975, 23 Avon Sabres were donated to the Indonesian Air Force (TNI-AU); five of these were ex-Malaysian aircraft. [77]

CA-27 marques:

Canadair Sabre

F-86 Sabre monument at the Royal Military College of Canada in Kingston, Ontario CMR - F86 sabre.JPG
F-86 Sabre monument at the Royal Military College of Canada in Kingston, Ontario

The F-86 was also manufactured by Canadair in Canada as the CL-13 Sabre to replace its de Havilland Vampires, with the following production models:

Sabre Mk 1
one built, prototype F-86A
Sabre Mk 2
350 built, F-86E-type, 60 to USAF, three to RAF, 287 to RCAF
Sabre Mk 3
one built in Canada, test-bed for the Orenda jet engine
Sabre Mk 4
438 built, production Mk 3, 10 to RCAF, 428 to RAF as Sabre F-4
Sabre Mk 5
370 built, F-86F-type with Orenda engine, 295 to RCAF, 75 to Luftwaffe
Sabre Mk 6
655 built, 390 to RCAF, 225 to Luftwaffe, six to Colombia and 34 to South Africa

Production summary

Production costs

F-86AF-86DF-86EF-86FF-86HF-86KF-86L
Program R&D cost4,707,802
Airframe101,528191,313145,326140,082316,360334,633
Engine52,97175,03639,99044,664214,61271,474
Electronics7,5767,0586,3585,6496,83110,354
Armament16,33369,98623,64517,66927,57320,135
Ordnance4194,1383,04717,1174,761
Flyaway cost178,408343,839219,457211,111582,493441,357343,839
Maintenance cost per flying hour135451187

Note: The costs are in approximately 1950 United States dollars and have not been adjusted for inflation. [18]

Operators

former F-86 operators F-86 Operators.png
former F-86 operators
Source: F-86 Sabre Jet: History of the Sabre and FJ Fury [79]
F-86F-30 of the Argentine Air Force, National Aeronautics Museum, Buenos Aires, Argentina C-122 NA F-86 Sabre Argentine Airforce (7307046176).jpg
F-86F-30 of the Argentine Air Force, National Aeronautics Museum, Buenos Aires, Argentina
BAF F-86 Sabre in the BAF Museum F-86 Fighter Aircraft at BAF Museum (2).jpg
BAF F-86 Sabre in the BAF Museum
An F-86 Sabre from the Golden Crown aerobatic display team, of the Imperial Iranian Air Force. F-86 Sabre-golden crown-Imperial Iranian Air Force.jpg
An F-86 Sabre from the Golden Crown aerobatic display team, of the Imperial Iranian Air Force.
F-86 Sabre of Italian Air Force F-86 Lancieri Neri.jpg
F-86 Sabre of Italian Air Force
Displayed JASDF's F-86F Kyokuko at Komatsu AB. F-86F (JASDF).jpg
Displayed JASDF's F-86F Kyokukō at Komatsu AB.
Royal Norwegian Air Force North American F-86F Sabre Norwegian Air Force North American F-86F Sabre Bidini-1.jpg
Royal Norwegian Air Force North American F-86F Sabre
F-86 Republic of Korea Air Force 24865 an F-86F RoKAF (3224603605).jpg
F-86 Republic of Korea Air Force
Portuguese F-86F displayed at Monte Real Air Base F86Sabre01RG.jpg
Portuguese F-86F displayed at Monte Real Air Base
F-86 Spanish Air Army, Ember Patrol, Cuatro Vientos, Madrid F-86F Sabre (Museo del Aire de Madrid) (4).jpg
F-86 Spanish Air Army, Ember Patrol, Cuatro Vientos, Madrid
North American F-86 E Sabre in Istanbul Aviation Museum Istanbul 5376.jpg
North American F-86 E Sabre in Istanbul Aviation Museum
Flag of Argentina.svg  Argentina
Acquired 28 F-86Fs, 26 September 1960, FAA s/n CA-101 through CA-128. The Sabres were already on reserve status at the time of the Falklands War but were reinstated to active service to bolster air defences against possible Chilean involvement. Finally retired in 1986.
Flag of Australia (converted).svg  Australia
Flag of Bangladesh.svg  Bangladesh
8 F-86F-40-NAs captured from Pakistan, phased out. [80]
Flag of Belgium (civil).svg  Belgium
5 F-86F Sabres delivered, no operational unit.
Flag of Canada (Pantone).svg  Canada
Flag of Colombia.svg  Colombia
Acquired four F-86Fs from Spanish Air Force (s/n 2027/2028), five USAF F-86F (s/n 51-13226) and other nine Canadair Mk.6; assigned to Escuadron de Caza-Bombardero.
Flag of Denmark.svg  Denmark
59 F-86D-31NA(38) F-86D-36NA(21)s in service from 1958 – 1966 ESK 723, ESK 726, ESK 728 [81]
Flag of Ethiopia (1897-1936; 1941-1974).svg Ethiopia
Acquired 14 F-86Fs in 1960. [82]
Flag of Germany.svg  Germany
Flag of Honduras (darker variant).svg  Honduras
Acquired and 10 CL.13 Mk2 (F-86E) from Yugoslavia.
State Flag of Iran (1964).svg Iran
Acquired an unknown number of F-86Fs. [82]
Flag of Iraq (1924-1959).svg Iraq
Bought some units of the type but they were never operated and were returned.
Flag of Japan.svg  Japan
Acquired 180 U.S. F-86Fs, 1955–1957. Mitsubishi built 300 F-86Fs under license 1956–1961, and were assigned to 10 fighter hikōtai or squadrons. JASDF called F-86F the "Kyokukō" (旭光, Rising Sunbeam) and F-86D the "Gekkō" (月光, Moon Light). Their Blue Impulse Aerobatic Team, a total of 18 F-models were converted to reconnaissance version in 1962. Some aircraft were returned to the Naval Air Weapons Station China Lake, California, as drones.
Flag of Norway.svg  Norway
Acquired 115 F-86Fs, 1957–1958; and assigned to seven squadrons, Nos. 331, 332, 334, 336, 337, 338 and 339.
Flag of Pakistan.svg  Pakistan
Acquired 102 U.S.-built F-86F-35-NA and F-86F-40-NAs, last of North American Aviation's production line, 1954–1960s.
Flag of Peru.svg  Peru
Acquired 26 U.S.-built F-86Fs in 1955, assigned to Escuadrón Aéreo 111, Grupo Aéreo No.11 at Talara air force base. Finally retired in 1979.
Flag of the Philippines (navy blue).svg Philippines
Acquired 50 F-86Fs in 1957. Retired in the late 1970s.
Flag of Portugal.svg  Portugal
A total of 65 acquired: 50 U.S.-built F-86Fs, 1958, including some from USAF's 531st Fighter Bomber Squadron, Chambley and 15 ex-Royal Norwegian Air Force. In Portugal, they served in Squadron 201 (formerly designated as Sqn. 50 and later Sqn. 51, before being renamed in 1978) and Squadron 52, both based at Air Base No. 5, Monte Real. In 1961, the Portuguese Air Force deployed some of its F-86Fs to Portuguese Guinea, where they formed Detachment 52, based at Base-Aerodrome No. 2, Bissalanca/Bissau.
Flag of the Republic of China.svg  Taiwan (Republic of China)
Acquired 320 U.S.-built F-86Fs,7 RF-86Fs,18 F-86Ds, The 18 F-86Ds back to U.S. military and US send 6 to Republic of Korea Air Force,8 to Philippine Air Force in 1966.
Flag of Saudi Arabia (1938-1973).svg Saudi Arabia
Acquired 16 U.S.-built F-86Fs in 1958, and three Fs from Norway in 1966; and assigned to RSAF No. 7 Squadron at Dhahran.
Flag of South Africa (1928-1994).svg South Africa
Acquired on loan 22 U.S.-built F-86F-30s during the Korean War and saw action with 2 Squadron SAAF.
Flag of South Korea.svg  South Korea
Acquired U.S.-built 112 F-86Fs and 10 RF-86Fs, beginning 20 June 1955; and assigned to ROKAF 10th Wing. It also served with the ROKAF Black Eagles aerobatic team for annual event from 1959 to 1966. The last F-86s retired in 1990.
Flag of Spain (1945-1977).svg Spain
Acquired 270 U.S.-built F-86Fs, 1955–1958; designated C.5s and assigned to 5 wings: Ala de Caza 1, 2, 4, 5, and 6. Retired 1972.
Flag of Thailand.svg  Thailand
Acquired 40 U.S.-built F-86Fs, 1962; assigned to RTAF Squadrons, Nos. 12 (Ls), 13, and 43.
A retired Royal Thai Air Force F-86 A retired Royal Thai Air Force F-86.jpg
A retired Royal Thai Air Force F-86
Flag of Tunisia (1959-1999).svg Tunisia
Acquired 15 used U.S.-built F-86F in 1969.
Flag of Turkey.svg  Turkey
Acquired U.S.-built 33 P-86As, 111 F-86Es and Canadian-built 107 F-86E(M) [83]
Flag of the United Nations.svg United Nations
Received 5 F-86E(M)s from Italy as MAP redeployment 1963, manned by Philippine pilots; F-86F units from Ethiopia and Iran also used in ONUC.
Flag of the United States.svg  United States
Flag of Venezuela (1930-1954).svg Venezuela
Acquired 30 U.S.-built F-86Fs, October 1955 – December 1960; and assigned to one group, Grupo Aéreo De Caza No. 12, three other squadrons.
Flag of Yugoslavia (1946-1992).svg  Yugoslavia
Acquired 121 Canadair CL-13s and F-86Es, operating them in several fighter aviation regiments between 1956 and 1971.

Civil aviation

According to the FAA there are 50 privately owned and registered F-86s in the US, including Canadair CL-13 Sabres. [84] [Note 4]

Notable pilots

Surviving aircraft

Specifications (F-86F-40-NA)

3-view drawing of the F-86 Sabre. F-86F Sabre afg-041110-019.svg
3-view drawing of the F-86 Sabre.

Data fromThe North American Sabre [91] and North American F-86F-40-NA [92]

General characteristics

Performance

678 mph (589 kn; 1,091 km/h) / M1.02
599 mph (521 kn; 964 km/h) at 35,000 ft (10,668 m) at 15,352 lb (6,964 kg)
597 mph (519 kn; 961 km/h) at 21,148 ft (6,446 m)
599 mph (521 kn; 964 km/h) at 22,835 ft (6,960 m)

Armament

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

Mikoyan-Gurevich MiG-17 Fighter aircraft family

The Mikoyan-Gurevich MiG-17 is a high-subsonic fighter aircraft produced in the USSR from 1952 and operated by numerous air forces in many variants. It is an advanced development of the similar-looking MiG-15 of the Korean War. The MiG-17 was license-built in China as the Shenyang J-5 and Poland as the PZL-Mielec Lim-6.

Mikoyan-Gurevich MiG-15 Soviet fighter aircraft

The Mikoyan-Gurevich MiG-15 is a jet fighter aircraft developed by Mikoyan-Gurevich for the Soviet Union. The MiG-15 was one of the first successful jet fighters to incorporate swept wings to achieve high transonic speeds. In combat over Korea, it outclassed straight-winged jet day fighters, which were largely relegated to ground-attack roles, and quickly countered the similar American swept-wing North American F-86 Sabre.

North American F-100 Super Sabre 1953 fighter aircraft family

The North American F-100 Super Sabre is an American supersonic jet fighter aircraft that served with the United States Air Force (USAF) from 1954 to 1971 and with the Air National Guard (ANG) until 1979. The first of the Century Series of USAF jet fighters, it was the first USAF fighter capable of supersonic speed in level flight. The F‑100 was designed by North American Aviation as a higher performance follow-on to the F-86 Sabre air superiority fighter.

USAF units and aircraft of the Korean War Overview of the United States Air Force units and aircraft of the Korean War

The Korean War was significant in the fact that it was the first war in which the newly independent United States Air Force was involved.

Gabby Gabreski American flying ace

Francis Stanley "Gabby" Gabreski was a Polish-American career pilot in the United States Air Force who retired as a colonel after 26 years of military service. He was the top American and United States Army Air Forces fighter ace over Europe during World War II and a jet fighter ace with the Air Force in the Korean War.

Joseph C. McConnell

Joseph Christopher McConnell Jr. was a United States Air Force fighter pilot who was the top American flying ace during the Korean War. A native of Dover, New Hampshire, Captain McConnell was credited with shooting down 16 MiG-15s while flying North American F-86 Sabres. He was awarded the Distinguished Service Cross, Silver Star, and the Distinguished Flying Cross for his actions in aerial combat. McConnell was the first American triple jet-on-jet fighter ace and is still the top-scoring American jet ace.

North American F-86D Sabre USAF all-weather interceptor

The North American F-86D/K/L Sabre initially known as the F-95 and widely known informally as the "Sabre Dog", was an American transonic jet fighter aircraft, developed for the United States Air Force, from the North American F-86 Sabre. The original F-86 Sabre was conceived as a day fighter, whereas the F-95 was specifically developed as an all-weather interceptor. Production examples of the F-86D/K/L differed from other Sabres in that they had a larger fuselage, a larger afterburning engine, and a distinctive nose radome; the "Sabre Dog" shared only 25% per cent of its components with other Sabre variants.

The Battle of Boyra, on 22 November 1971, was an aerial interception battle that was fought between the Indian Air Force and intruding Pakistani Air Force jets that had crossed into Indian Airspace. The Pakistani Army was engaged in combat against the Mukti Bahini and a Battalion size detachment of the Indian Army in the Battle of Garibpur as part of the Bangladesh Liberation War. Pakistani ground forces requested air cover and close air support from the Pakistan Air Force (PAF). The PAF aircraft, while providing support to the Pakistani ground units, ended up crossing the Indian border. A detachment of four Folland Gnats was moved to Dum Dum from its parent base at Kalaikunda, near Kharagpur, over 100 km to the Southwest, to intercept the Pakistan Air Force aircraft. The Detachment was commanded by Flt Lt Roy Andrew Massey.

Canadair Sabre

The Canadair Sabre is a jet fighter aircraft built by Canadair under licence from North American Aviation. A variant of the North American F-86 Sabre, it was produced until 1958 and used primarily by the Royal Canadian Air Force (RCAF) until replaced with the Canadair CF-104 in 1962. Several other air forces also operated the aircraft.

51st Fighter Wing Military unit

The 51st Fighter Wing is a wing of the United States Air Force and the host unit at Osan Air Base, South Korea. The wing has been based entirely in the Far East during its entire existence, including its combat role as the 51st Fighter-Interceptor Wing during the Korean War.

MiG Alley

"MiG Alley" was the name given by United Nations (UN) pilots during the Korean War to the northwestern portion of North Korea, where the Yalu River empties into the Yellow Sea. It was the site of numerous dogfights between UN fighter pilots and their opponents from North Korea and the People's Republic of China. Soviet-built Mikoyan-Gurevich MiG-15 were the aircraft used during most of the conflict, and the area's nickname was derived from them. It was the site of the first large-scale jet-vs-jet air battles, with the North American F-86 Sabre.

Harrison Thyng United States Air Force general and flying ace

Brigadier General Harrison Reed Thyng was a fighter pilot and a general in the United States Air Force (USAF). He is notable as one of only six USAF fighter pilots to be recognized as an ace in two wars. On retiring from the military, Thyng became a New Hampshire candidate to the United States Senate.

113th Wing Military unit

The 113th Wing, known as the "Capital Guardians", is a unit of the District of Columbia Air National Guard, stationed at Joint Base Andrews, Maryland. If activated to federal service, the fighter portion of the Wing is gained by the United States Air Force's Air Combat Command, while the airlift portion is gained by Air Mobility Command.

182d Fighter Squadron Military unit

The 182d Fighter Squadron is a unit of the Texas Air National Guard 149th Fighter Wing located at Kelly Field Annex, Joint Base San Antonio, Texas. The 149th is equipped with the F-16C/D Fighting Falcon.

121st Fighter Squadron Military unit

The 121st Fighter Squadron is a unit of the District of Columbia Air National Guard 113th Wing located at Joint Base Andrews, Camp Springs, Maryland. The 121st is equipped with the Block 30 F-16C/D Fighting Falcon.

Yevgeny Pepelyaev

Yevgeny Georgievich Pepelyaev a Soviet fighter pilot in the Korean war; most Russian sources credit him as the second-highest scoring pilot in the war with 19 shootdowns, placing him only below Nikolai Sutyagin. However, some Western sources indicate him to be the top ace of the war, and he claimed to have 23 victories in his memoir, which would put him above Sutyagin's 22 shootdowns.

United States Air Force in South Korea

The United States Air Force in South Korea is composed of units assigned to Pacific Air Forces Seventh Air Force. The mission of the personnel, equipment and aircraft is to deter, protect and defend the Republic of Korea from attack from the Democratic People's Republic of Korea (DPRK) or more commonly known as North Korea.

Vermont Garrison American flying ace

Vermont Garrison was a career officer in the United States Air Force, and a flying ace credited with 17.33 victories in aerial combat. He was one of only seven Americans to achieve ace status during World War II, then again against jet fighter opposition during the Korean War. In 1966, Garrison participated in his third war, as vice commander of the 8th Tactical Fighter Wing, and flew a full tour of bombing and fighter missions over North Vietnam.

51st Operations Group Military unit

The 51st Operations Group is the operational flying component of the United States Air Force 51st Fighter Wing, stationed at Osan Air Base, South Korea.

References

Notes

  1. Quote: "The Canadair Sabre Mk 6 was the last variant and considered to be the 'best' production Sabre ever built."
  2. The MiG-17 was a development of the MiG-15 upgraded with a more advanced wing and afterburner (the Sabre's all-flying tail would not be employed until the supersonic MiG-19). The MiG-17 proved to be a deadly foe in Vietnam in the 1960s against more advanced U.S. supersonic opponents; some, such as the F-4 Phantom, actually lacked the guns and radar gunsight introduced by the F-86. [68]
  3. MiG Alley: Sabres Vs. MiGs Over Korea. was researched by North American tech rep John L. Henderson. The aircraft were F-86E-10s: 51-2303, -2819, -2826 and -2836; and F-86F-1's 51-2855, −2862, −2867, −2868, −2884 and −2900.
  4. Although privately registered in the US, two F-86s are actually owned by an individual for display purposes only in a private museum collection. [84]

Citations

  1. 1 2 Winchester 2006, p. 184.
  2. "MiG-15 'Fagot'." Archived 27 July 2011 at the Wayback Machine mnangmuseum.org. Retrieved: 19 July 2011.
  3. Goebel, Greg. "Sabre Ancestor: FJ-1 Fury." vectorsite.net. Retrieved: 19 July 2011.
  4. "FJ-1 Fury." globalsecurity.org. Retrieved: 20 August 2010.
  5. 1 2 3 Werrell 2005 , p. 5.
  6. Werrell 2005 , p. 6.
  7. 1 2 "North American F-86." Aviation History On-line Museum. Retrieved: 20 August 2010.
  8. 1 2 Lednicer, David. "The Incomplete Guide to Airfoil Usage." Archived 20 April 2010 at the Wayback Machine ae.illinois.edu, 15 October 2010. Retrieved: 19 July 2011.
  9. 1 2 Blair, Mac. "Evolution of the F-86" AIAA Evolution of Aircraft Wing Design Symposium, 18 March 1980.
  10. Radinger and Schick 1996, p. 15.
  11. Willy and Schick 1996, p. 32.
  12. Bevan, Duncan. "F-86 Sabre wings explained." Archived 26 July 2011 at the Wayback Machine tripod.com. Retrieved: 7 June 2011.
  13. 1 2 Werrell 2005 , pp. 9–10.
  14. "North American F-86 Sabre (Day-Fighter A, E and F Models)." Archived 24 February 2015 at the Wayback Machine National Museum of the United States Air Force. Retrieved: 7 June 2011.
  15. "Planes of Perrin, North American F-86L "Dog Sabre." perrinairforcebase.net. Retrieved: 20 August 2010.
  16. Joos 1971, p. 3.
  17. Wagner, The North American Sabre Retrieved: 20 August 2010.
  18. 1 2 Knaack 1978, p. 52.
  19. Leyes 1999, pp. 243, 530.
  20. Goebel, Greg (1 August 2002). "F-86E Through F-86L". faqs.org. Retrieved 27 November 2017.
  21. "North American F-86H Sabre". National Museum of the US Air Force. 29 May 2015. Retrieved 7 November 2017.
  22. Dunlap 1948, pp. 310–311.
  23. 1 2 https://www.airspacemag.com/military-aviation/to-snatch-a-sabre-4707550/
  24. Hoover 1997, pp. 184–185.
  25. Hoover 1997, p. 184.
  26. 1 2 Thompson, Warren. "Sabre: The F-86 in Korea." Flight Journal, December 2002. Retrieved: 30 June 2011.
  27. 1 2 3 Ray Wagner, The North American Sabre
  28. 1 2 "Fact Sheet: The United States Air Force in Korea." Archived 16 July 2007 at the Wayback Machine National Museum of the United States Air Force. Retrieved: 7 June 2011.
  29. 1 2 " 'Bud' Mahurin." acepilots/com. Retrieved: 20 August 2010.
  30. Zampini, Diego. "Lt. Col. George Andrew Davis." acepilots.com, 8 July 2011. Retrieved: 20 August 2010.
  31. "USAF Organizations in Korea, Fighter-Interceptor 4th Fighter-Interceptor Wing." Maxwell Air Force Base. Retrieved: 30 June 2011.
  32. McGregor, Col. P. M. J. "The History of No 2 Squadron, SAAF, in the Korean War." rapidttp.com. Retrieved: 19 July 2011.
  33. American Aviation Historical Society, Vol. 30, 1985.
  34. Thompson and McLaren 2002
  35. Brune 1996 , p. 215
  36. Stillion, John and Scott Perdue. "Air Combat Past, Present and Future." Archived 6 October 2012 at the Wayback Machine Project Air Force, Rand, August 2008. Retrieved" 11 March 2009.
  37. Igor Seidov and Stuart Britton. Red Devils over the Yalu: A Chronicle of Soviet Aerial Operations in the Korean War 1950–53 (Helion Studies in Military History). Helion and Company 2014. ISBN   978-1909384415. Page: 554.
  38. Zhang, Xiaoming. Red Wings over the Yalu: China, the Soviet Union, and the Air War in Korea (Texas A&M University Military History Series). College Station, Texas: Texas A&M University, 2002. ISBN   978-1-58544-201-0.
  39. Kum-Suk No and J. Roger Osterholm. A MiG-15 to Freedom: Memoir of the Wartime North Korean Defector who First Delivered the Secret Fighter Jet to the Americans in 1953. McFarland, 2007. ISBN   978-0786431069. Page 142.
  40. "Korean War Air Loss Database (KORWALD)" (PDF). Archived from the original (PDF) on 17 June 2019. Retrieved 21 March 2016.
  41. Sewell, Stephen L. "Russian Claims from the Korean War 1950–53." Archived 1 November 2006 at the Wayback Machine korean-war.com. Retrieved: 19 July 2011.
  42. Zhang, Xiaoming. Red Wings over the Yalu: China, the Soviet Union, and the Air War in Korea. College Station, Texas: Texas A&M University Press, 2002. ISBN   1-58544-201-1.
  43. Dorr, Robert F., Jon Lake and Warren E. Thompson. Korean War Aces. London: Osprey Publishing, 2005. ISBN   1-85532-501-2.
  44. Stillion, John and Scott Perdue. "Air Combat Past, Present and Future." Archived 6 October 2012 at the Wayback Machine Project Air Force, Rand, August 2008. Retrieved" 11 March 2009.
  45. https://web.archive.org/web/20130604071241/http://www.acig.org/artman/publish/article_315.shtml
  46. USAF losses during the Korean War. USAF Statistical Digest FY1953
  47. ""Six were written off during action."/F-86F in Foreign Service. Joe Baugher. 1999". Archived from the original on 31 January 2019. Retrieved 21 February 2019.
  48. http://www.taipeitimes.com/News/feat/archives/2016/07/03/2003650222
  49. Robbins, Robby. "323 Death Rattlers." inreach.com. Retrieved" 20 August 2010.
  50. Hussain, Air Commodore Jamal (Ret'd) J. "Excellence in Air Combat: PAF's Forte." Pakistan's Defence Journal. Retrieved: 20 August 2010.
  51. "Pakistan's Air Power." Flight International , 5 May 1984, p. 1208 via FlightGlobal.com, Retrieved: 22 October 2009.
  52. "BBC report on PAF 1965." YouTube. Retrieved: 16 November 2012.
  53. 1 2 "1965 Losses." Archived 21 July 2006 at the Wayback Machine bhart-rakshak.com. Retrieved: 20 August 2010.
  54. 1 2 Rakshak, Bharat. "IAF Kills in 1965." Archived 5 November 2006 at the Wayback Machine bharat-rakshak.com. Retrieved: 20 August 2010.
  55. 1 2 "Devastation of Pathankot." Defence Journal, September 2000. Retrieved: 20 August 2010.
  56. 1 2 "Tail Choppers: Birth of a Legend." Defence Journal, December 1998. Retrieved:20 August 2010.
  57. "A Hero Fades Away." Defence Journal, Feb–Mar. 1999. Retrieved: 20 August 2010.
  58. South Asian Military Handbook. United States Central Intelligence Agency. 1973. pp.  GLOS -12 . The US F-86 fighter has long been the mainstay of the Pakistan Air Force, and in spite of its subsonic performance, Islamabad is still seeking more. They were heavily committed during the 1971 war. Bangladesh captured about eight F-86s at the end of the war, but needs spare parts and technical assistance to keep them operational.
  59. ""India and Pakistan: Over the Edge." Time, 13 December 1971. Retrieved: 11 March 2009.
  60. 1 2 "1971 Indo-Pakistani war." subcontinent.com. Retrieved: 30 June 2011.
  61. Pillarisetti, Jagan. "Pakistani Air Losses of the 1971 War (Official List)". www.bharat-rakshak.com. Retrieved 11 May 2021.
  62. Tufail, Air Cdre M. Kaiser."It is the Man Behind the Gun." defencejournal.co, 2001. Retrieved: 25 November 2015.
  63. "IAF Losses in 1971." Archived 7 September 2006 at the Wayback Machine Bharat Rakshak.com. Retrieved: 20 August 2010.
  64. "Bangladesh, The Liberation War." memory/loc.gov. Retrieved: 30 June 2011.
  65. Singh et al. 2004, p. 30.
  66. "Antonio Bautista Air Base". Globalsecurity.org, 2009. Retrieved: 7 August 2013.
  67. Sauter, Mark. "Ghost pilots and mystery aircraft of the Korean War." Korean Confidential, 4 December 2012. Retrieved: 31 March 2013. Archived 15 February 2015 at the Wayback Machine
  68. Davies 2009, p. 21.
  69. "Soviet Sabre." Captured Planes. Retrieved: 30 June 2011.
  70. Michel 2007, p. 333.
  71. Davis, Larry H. "We interview Les Waltman." Archived 27 March 2012 at the Wayback Machine Sabre-pilots.org. Retrieved: 19 July 2011.
  72. "North American YF-93A Fact Sheet." Archived 27 October 2014 at the Wayback Machine National Museum of the United States Air Force. Retrieved: 20 August 2010.
  73. Thompson and McLaren 2002, pp. 139–155.
  74. http://www.dtic.mil/dtic/tr/fulltext/u2/031528.pdf
  75. "Sabre." RAAF Museum. Retrieved: 20 August 2010.
  76. Wilson 1994 , pp. 73–74.
  77. Wilson 1989 , p. 110.
  78. Wilson 1994 , p. 74
  79. Dorr 1993, pp. 65–96.
  80. "PHASED OUT AIRCRAFT". Bangladesh Air Force. Retrieved 25 September 2020.
  81. Schrøder 1991, p. 62.
  82. 1 2 Baugher, Joe. "F-86 Foreign Service." USAAC/USAAF/USAF Fighter and Pursuit Aircraft: North American F-86 Sabre. Retrieved: 20 August 2010.
  83. "www.tayyareci.com F-86 tayyaresi,F-86, F-86E, SABRE .. 1951 - 2006 Period TUAF AIRCRAFTS 1951 - 2006 dönemi Turk HvKK UCAKLARI". www.tayyareci.com. Retrieved 4 April 2021.
  84. "FAA Registry: F-86." FAA. Retrieved: 17 May 2011.
  85. Tufail, Air Cdre M. Kaiser. "Alam's Speed-shooting Classic." defencejournal.com. Retrieved: 20 August 2010.
  86. Pushpindar, Singh. Fiza ya: Psyche of the Pakistan Air Force. New Delhi: Himalayan Books, 1991. ISBN   81-7002-038-7.
  87. Hoover 1997, p. 145.
  88. "S/L Andy MacKenzie RCAF (Ret)." Archived 16 May 2008 at the Wayback Machine Sabre Jet Classics, Volume 10, Number 1, Winter 2003.
  89. "Faller, Theodore, LCDR." togetherweserved.com. Retrieved: 25 November 2015.
  90. Goldstrand, Theresa. "Faller's heroic act remembered by community." The New Review (Ridgecrest, California), 14 August 2014. Retrieved: 25 November 2015.
  91. Wagner 1963, p. 145.
  92. Baugher, Joe. "North American F-86F-40-NA." joebaugher.com. Retrieved: 28 September 2020.
  93. Lednicer, David. "The Incomplete Guide to Airfoil Usage". m-selig.ae.illinois.edu. Retrieved 16 April 2019.
  94. Futrell 2000, p. 639.

Bibliography