General Electric J47

Last updated
J47
General Electric J47 BE.jpg
Preserved General Electric J47
Type Turbojet
Manufacturer General Electric
First run21 June 1947
Major applications Boeing B-47 Stratojet
Convair B-36 Peacemaker
North American B-45 Tornado
North American F-86 Sabre
Number built36,500
Developed from General Electric J35
Developed into General Electric J73

The General Electric J47 turbojet (GE company designation TG-190) was developed by General Electric from its earlier J35. [1] It first flew in May 1948. The J47 was the first axial-flow turbojet approved for commercial use in the United States. It was used in many types of aircraft, and more than 30,000 were manufactured before production ceased in 1956. It saw continued service in the US military until 1978. Packard built 3,025 of the engines under license.

Contents

The J47's greatest advantage, as advertised, was its array of features which were unavailable and unprecedented in any other engine. It was advertised as an 'all-weather engine' due to its anti-icing systems which allowed it to perform at high altitudes and extreme temperatures where other aircraft's performance suffered. Its development began without an explicit need for it, although this design was quickly purchased by the military for its many potential benefits. [2]

In 1978, J47s were formally withdrawn from active military duty when the Air National Guard retired the jet-boosted KC-97Js. [3] Despite this, these engines are still extensively utilized in F-86 Sabre jets owned by civilians, making them a common sight at air shows.

Design and development

The J47 design used experience from the TG-180/J35 engine which was described by Flight magazine in 1948 [4] as the most widely used American-conceived turbojet.

The turbojet featured a revolutionary anti-icing system where hollow frame struts allowed heated airflow to pass through from the compressor, allowing fighter jets equipped with the engine to function at high altitudes, and in cold conditions such as the top of Mount Washington in New Hampshire's White Mountains, where the engine was first tested.

The engine featured an electronically controlled afterburner, a system that dumped additional fuel into the combustor pipe 'behind' the engine, reheating the exhaust and producing significantly more thrust, although with greatly reduced efficiency and high fuel burn rates.

The engine production process in the Lockland facility (renamed to the Evendale facility) utilized vertical engine assembly to ensure compressor rotor balance and stability. The technological jump provided by the engine led to it becoming the most produced jet engine in aviation history, and established GE Aviation as a worldwide leader in jet propulsion.

Overhaul life for the J47 ranged from 15 hours (in 1948) to a theoretical 1,200 hours (625 achievable in practice) in 1956. For example, the J47-GE-23 was rated to run 225 hours time between overhauls. As installed on the F-86F, it experienced one in-flight shutdown every 33,000 hours in 1955 and 1956. [5]

Variants

J47-GE-1
(TG-190A) 4,850 pounds-force (22 kN) thrust. [6]
J47-GE-2
(TG-190E) 6,000 pounds-force (27 kN) at 7,950 rpm, powered the North American FJ-2 Fury [7]
J47-GE-3
(TG-190A) 4,850 pounds-force (22 kN) thrust. [6]
J47-GE-7
(TG-190B) 5,000 pounds-force (22 kN) thrust. [6]
J47-GE-9
(TG-190B) 5,000 pounds-force (22 kN) thrust. [6]
J47-GE-11
(TG-190C) Powered the Boeing B-47A and B-47B [7]
J47-GE-13
(TG-190C) Powered the North American F-86E Sabre & North American B-45C tornado [7]
J47-GE-15
(7E-TG-190C) Powered the North American B-45C tornado [7]
J47-GE-17
(7E-TG-190D) 5,425 pounds-force (24 kN) at 7,950 rpm dry, 7,350 pounds-force (33 kN) at 7,950 rpm wet, powered the North American F-86D Sabre [7]
J47-GE-17B
5,425 pounds-force (24 kN) thrust
J47-GE-19
(TG-190C) 5,200 pounds-force (23 kN), powered the Convair B-36D & B-36F [7]
J47-GE-23
(7E-TG-190E) 5,800 pounds-force (26 kN), powered the Boeing B-47B and RB-47B [7]
J47-GE-25
5,970 pounds-force (27 kN) thrust dry, (6,970 pounds-force (31 kN) with water injection), powered the Boeing B-47E and RB-47E [7]
J47-PM-25
(TG-190E) Production by Packard Motor Car Company
J47-ST-25
(TG-190E) Production by Studebaker Corp.
J47-GE-27
(TG-190E) 5,970 pounds-force (27 kN) thrust, powered the North American F-86F Sabre [7]
J47-GE-29
(TG-190E) Similar to -27
J47-GE-33
5,550 pounds-force (25 kN) thrust, powered the F-86F & F-86K [7]

Applications

Two J47 turbojet engines were mounted outboard of the three Pratt & Whitney R-4360 Wasp Major piston engines on each wing of the B-36. B-36 engines, Richie.jpg
Two J47 turbojet engines were mounted outboard of the three Pratt & Whitney R-4360 Wasp Major piston engines on each wing of the B-36.

Ground-based vehicles that used the engine include:

Nuclear-powered X39

In the 1950s, interest in the development of nuclear-powered aircraft led GE to experiment with two nuclear-powered gas turbine designs, one based on the J47, and another new and much larger engine called the X211.

The design based on the J47 became the X39 program. This system consisted of two modified J47 engines which, instead of combusting jet fuel, received their heated, compressed air from a heat exchanger that was part of the Heat Transfer Reactor Experiment (HTRE) reactor. The X-39 was successfully operated in conjunction with three different reactors, the HTRE-1, HTRE-2 and HTRE-3. [8] Had the program not been cancelled, these engines would have been used to power the proposed Convair X-6.

Specifications (J47-GE-25)

Data from [7]

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Boeing B-47 Stratojet</span> Cold War-era American jet bomber

The Boeing B-47 Stratojet is a retired American long-range, six-engined, turbojet-powered strategic bomber designed to fly at high subsonic speed and at high altitude to avoid enemy interceptor aircraft. The primary mission of the B-47 was as a nuclear bomber capable of striking targets within the Soviet Union.

<span class="mw-page-title-main">Convair YB-60</span> American prototype bomber (1950–1954)

The Convair YB-60 was a prototype heavy bomber built by Convair for the United States Air Force in the early 1950s. It was a purely jet-powered development of Convair's earlier mixed-power B-36 Peacemaker.

<span class="mw-page-title-main">North American FJ-2/-3 Fury</span> Carrier-capable variant of the F-86 Sabre built for the US Navy

The North American FJ-2 and FJ-3 Fury are a series of swept-wing and carrier-capable fighters for the United States Navy and Marine Corps. The FJ-2 resulted from an effort to navalize the North American F-86 Sabre operated by the United States Air Force. These aircraft feature folding wings, and a longer nose landing strut designed to increase angle of attack upon launch and to accommodate a longer oleo to absorb the shock of hard landings on an aircraft carrier deck.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

<span class="mw-page-title-main">Pratt & Whitney J57</span> Turbojet engine

The Pratt & Whitney J57 is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 was the first 10,000 lbf (45 kN) thrust class engine in the United States. It was also the first two-spool turbojet to run, a few months before the similar Bristol Olympus in the UK.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">Pratt & Whitney J75</span> Turbojet engine

The Pratt & Whitney J75 is an axial-flow turbojet engine first flown in 1955. A two-spool design in the 17,000 lbf (76 kN) thrust class, the J75 was essentially the bigger brother of the Pratt & Whitney J57 (JT3C). It was known in civilian service as the JT4A, and in a variety of stationary roles as the GG4 and FT4.

<span class="mw-page-title-main">Allison J35</span>

The General Electric/Allison J35 was the United States Air Force's first axial-flow compressor jet engine. Originally developed by General Electric in parallel with the Whittle-based centrifugal-flow J33, the J35 was a fairly simple turbojet, consisting of an eleven-stage axial-flow compressor and a single-stage turbine. With the afterburner, which most models carried, it produced a thrust of 7,400 lbf (33 kN).

<span class="mw-page-title-main">Convair XB-53</span> American bomber/attack aircraft project

The Convair XB-53 was a proposed jet-powered medium bomber aircraft, designed by Convair for the United States Army Air Forces. With a radical tailless, forward-swept wing design, the aircraft appeared futuristic; however, the project was canceled before either of the two prototypes were completed.

<span class="mw-page-title-main">Convair XB-46</span> American bomber prototype

The Convair XB-46 was a single example of an experimental medium jet bomber which was developed in the mid-1940s but which never saw production or active duty. It competed with similar designs, the North American XB-45 and Martin XB-48, all of which saw little use after the successful development of the Boeing XB-47.

<span class="mw-page-title-main">General Electric J85</span> Turbojet aircraft engine

The General Electric J85 is a small single-shaft turbojet engine. Military versions produce up to 3,500 lbf (16 kN) of thrust dry; afterburning variants can reach up to 5,000 lbf (22 kN). The engine, depending upon additional equipment and specific model, weighs from 300 to 500 pounds. It is one of GE's most successful and longest in service military jet engines, with the civilian versions having logged over 16.5 million hours of operation. The United States Air Force plans to continue using the J85 in aircraft through 2040. Civilian models, known as the CJ610, are similar but supplied without an afterburner and are identical to non-afterburning J85 variants, while the CF700 adds a rear-mounted fan for improved fuel economy.

The Boeing XB-56 was a proposal by Boeing for a re-engined version of the American jet-powered medium bomber aircraft, the B-47 Stratojet. The original designation for this modification was YB-47C.

<span class="mw-page-title-main">General Electric CJ805</span> Civil series of the J79 turbojet aircraft engine

The General Electric CJ805 is a jet engine which was developed by General Electric Aircraft Engines in the late 1950s. It was a civilian version of the J79 and differed only in detail. It was developed in two versions. The basic CJ805-3 was a turbojet and powered the Convair 880 airliner, while CJ805-23, a turbofan derivative, powered the Convair 990 Coronado variant.

<span class="mw-page-title-main">Douglas XB-43 Jetmaster</span> American bomber prototype

The Douglas XB-43 Jetmaster is an American 1940s jet-powered prototype bomber. The XB-43 was a development of the XB-42, replacing the piston engines of the XB-42 with two General Electric J35 engines of 4,000 lbf (17.8 kN) thrust each. Despite being the first American jet bomber to fly, it suffered stability issues and the design did not enter production.

<span class="mw-page-title-main">Avro Canada Orenda</span> 1940s Canadian turbojet aircraft engine

The Avro Canada TR5 Orenda was the first production jet engine from Avro Canada's Gas Turbine Division. Similar to other early jet engines in design, like the Rolls-Royce Avon or General Electric J47.

<span class="mw-page-title-main">General Electric YJ93</span> Turbojet engine

The General Electric YJ93 turbojet engine was designed as the powerplant for both the North American XB-70 Valkyrie bomber and the North American XF-108 Rapier interceptor. The YJ93 was a single-shaft axial-flow turbojet with a variable-stator compressor and a fully variable convergent/divergent exhaust nozzle. The maximum sea-level thrust was 28,800 lbf (128 kN).

<span class="mw-page-title-main">Westinghouse J46</span> Turbojet aircraft engine family

The Westinghouse J46 is an afterburning turbojet engine developed by the Westinghouse Aviation Gas Turbine Division for the United States Navy in the 1950s. It was primarily employed in powering the Convair F2Y Sea Dart and Vought F7U Cutlass. The engine also powered the land speed-record car known as the Wingfoot Express, designed by Walt Arfons and Tom Green It was intended to power the F3D-3, an improved, swept-wing variant of the Douglas F3D Skyknight, although this airframe was never built.

<span class="mw-page-title-main">General Electric T31</span>

The General Electric T31 was the first turboprop engine designed and built in the United States.

<span class="mw-page-title-main">General Electric J73</span> 1950s American turbojet engine

The General Electric J73 turbojet was developed by General Electric from the earlier J47 engine. Its original USAF designation was J47-21, but with innovative features including variable inlet guide vanes, double-shell combustor case, and 50% greater airflow was redesignated J73. Its only operational use was in the North American F-86H.

<span class="mw-page-title-main">Power Jets W.2</span> British turbojet engine

The Power Jets W.2 was a British turbojet engine designed by Frank Whittle and Power Jets Ltd. Like the earlier Power Jets W.1, the reverse-flow combustion configuration included a double-sided centrifugal compressor, 10 combustion chambers and an axial-flow turbine with air-cooled disc. It entered production as the Rolls-Royce Welland and was the first UK jet engine to power operational aircraft, the Gloster Meteor.

References

  1. "1954 | 0996 | Flight Archive". www.flightglobal.com. Archived from the original on 2016-05-07.
  2. Daugherty, Gina (2019-07-01). "Cold War Child: How the GE J47 Became the World's Most Produced Jet Engine". The GE Aerospace Blog | Aviation & Flight News. Retrieved 2024-02-07.
  3. "TINKER HISTORY: General Electric J47 turbojet engine profile". Tinker Air Force Base. 2017-08-31. Retrieved 2023-06-11.
  4. "Archived copy". Archived from the original on 2018-03-26. Retrieved 2016-04-19.{{cite web}}: CS1 maint: archived copy as title (link)
  5. 1956 | 0590 | Flight Archive. Flightglobal.com. Retrieved on 2013-08-16.
  6. 1 2 3 4 Wilkinson, Paul H. (1950). Aircraft engines of the World 1950 (11th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 54–55.
  7. 1 2 3 4 5 6 7 8 9 10 11 Bridgman, Leonard (1955). Jane's all the World's Aircraft 1955-56. London: Jane's all the World's Aircraft Publishing Co. Ltd.
  8. Thornton, G; Blumbeg, B. (January 1961). "Aircraft Nuclear Propulsion Heat Transfer Reactor Experiments Fulfill Test Goals". Nucleonics. 19 (1). McGraw-Hill. ISSN   0096-6207.